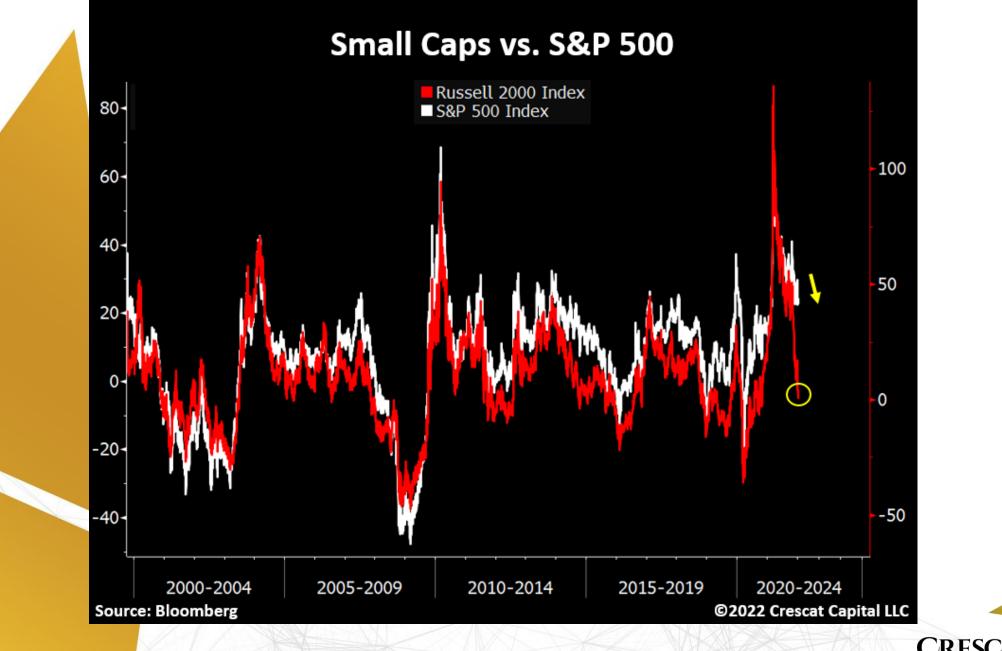


CRESCAT CAPITAL®

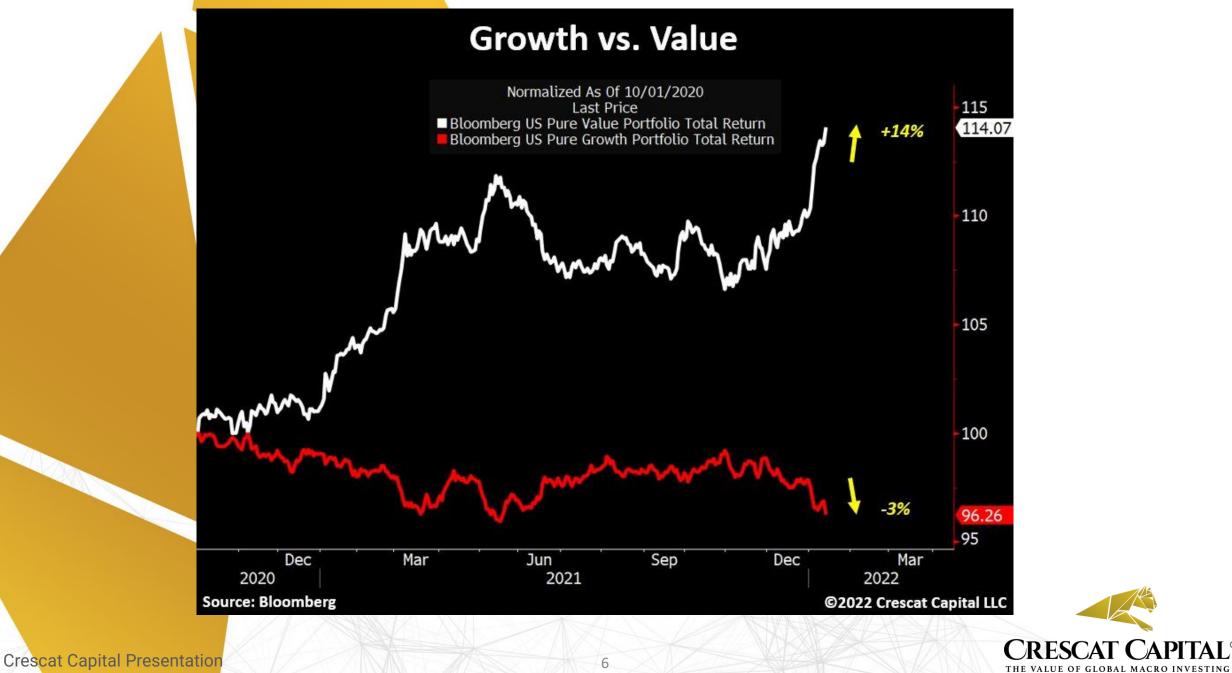
The Value of Global Macro Investing

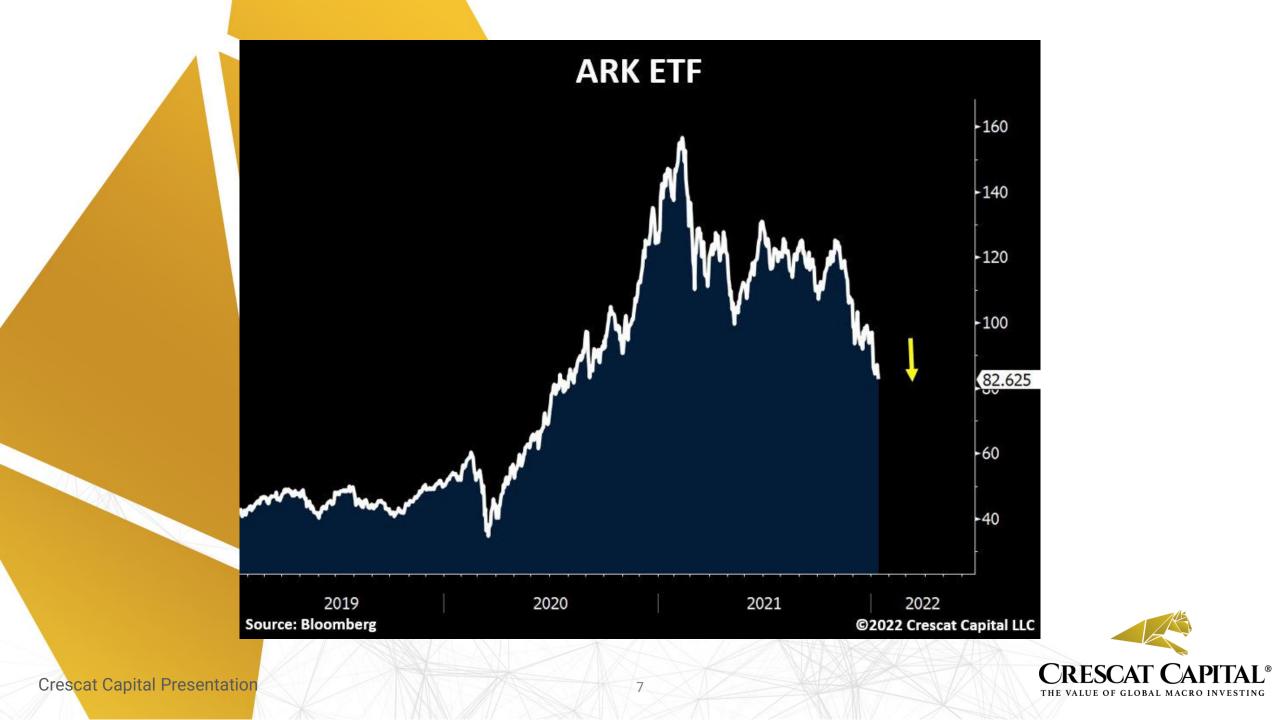
Crescat Capital Presentation | January 2022

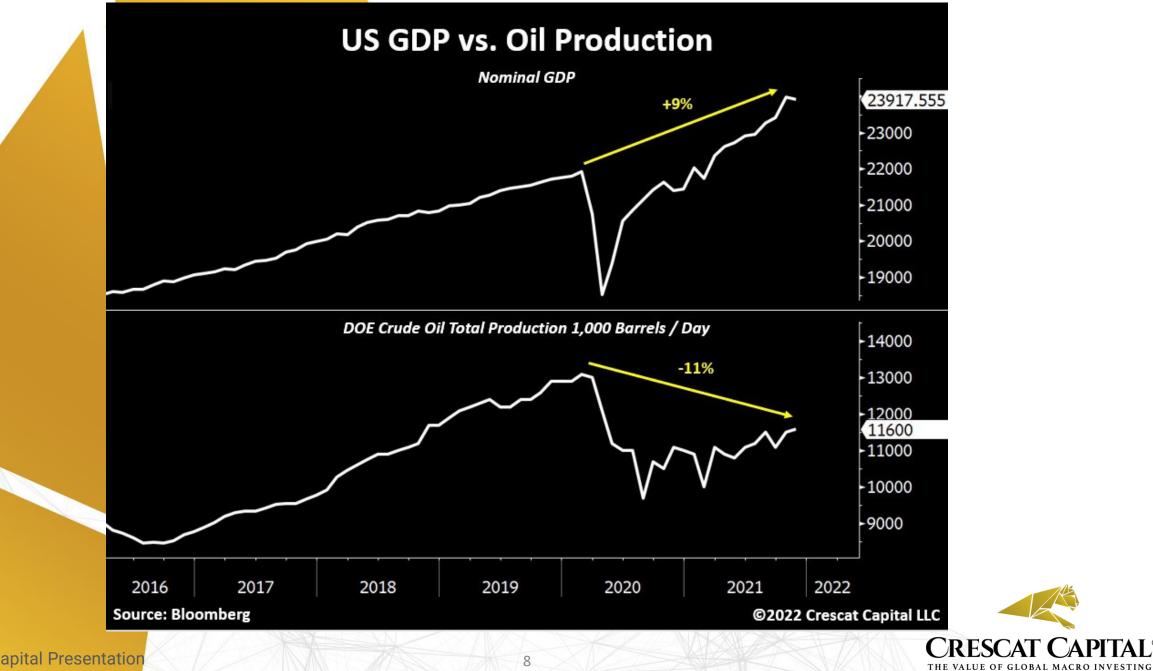
Important Disclosures

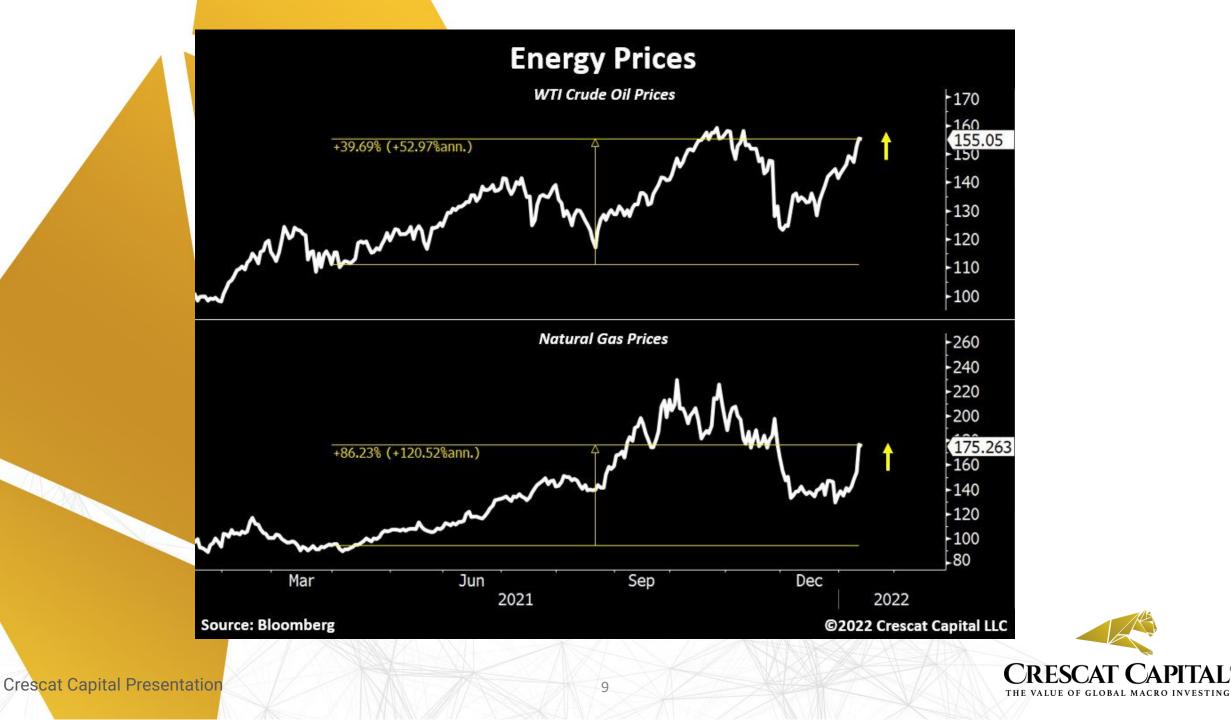

Only accredited investors and qualified clients will be admitted as limited partners to a Crescat fund. For natural persons, investors must meet SEC requirements including minimum annual income or net worth thresholds. Crescat funds are being offered in reliance on an exemption from the registration requirements of the Securities Act of 1933 and are not required to comply with specific disclosure requirements that apply to registration under the Securities Act. The SEC has not passed upon the merits of or given its approval to the Crescat funds, the terms of the offering, or the accuracy or completeness of any offering materials. A registration statement has not been filed for any Crescat fund with the SEC. Limited partner interests in the Crescat funds are subject to legal restrictions on transfer and resale. Investors should not assume they will be able to resell their securities. Investing in securities involves risk. Investors should be able to bear the loss of their investment. Investments in the Crescat funds are not subject to the protections of the Investment Company Act of 1940. Performance data represents past performance, and past performance does not guarantee future results. Performance data is subject to revision following each monthly reconciliation and annual audit. Current performance may be lower or higher than the performance data presented. Crescat is not required by law to follow any standard methodology when calculating and representing performance data. Crescat Portfolio Management claims compliance with Global Investment Performance Standards (GIPS[®]). Prospective clients can obtain a compliance presentation and the firm's list of composite descriptions by visiting our website at www.crescat.net/resources/due-diligence/. Returns are presented net of management fees and performance fees, except where otherwise indicated. The currency used to express performance is U.S. dollars. The performance of Crescat funds may not be directly comparable to the performance of other private or registered funds. Investors may obtain the most current performance data and private offering memorandum for a Crescat fund by contacting Linda Smith at (303) 228-7371 or by sending a request via email to lsmith@crescat.net. See the private offering memorandum for each **Crescat fund for complete information and risk factors.**

RETURNS (%)	DEC.	2021
WYNNEFIELD SMALL CAP VALUE	17.9	35.0
RENAISSANCE INSTIUTIONAL EQUITIES	10.5	20.0
VOCE CAPITAL	8.9	41.2
CLEARFIELD CAPITAL	3.6	8.8
RENAISSANCE INSTIUTIONAL DIVERSIFIED ALPHA	8.5	14.6
LAND & BUILDINGS OPPORTUNITY	8.4	43.2
RENAISSANCE INSTITUTIONAL DIVERSIFIED ALPHA	7.9	10.3
CRESCAT PRECIOUS METALS MASTER	7.2	11.7
VOSS VALUE MASTER	6.2	39.1
SENVEST MASTER FUND	6.1	85.0
LAKEWOOD	5.3	32.1
CITADEL WELLINGTON	3.9	26.3
CARLSON DOUBLE BLACK DIAMOND	2.9	13.3
EXODUSPOINT	2.3	5.5
POINT72	1.8	9.0
UNION SQUARE PARK	1.7	24.5
VIKING GLOBAL EQUITIES	1.1	-4.5
MILLENNIUM	1.1	13.5
ANSON	0.8	45.4
CASTLEKNIGHT	0.8	63.8
SCULPTOR MASTER	0.1	5.0
PALOMA	-0.3	10.1
HUDSON BAY INTERNATIONAL	-0.6	13.5
COATUE QUALIFIED PARTNERS	-3.3	5.0
COATUE OFFSHORE	-3.4	4.9
TIGER GLOBAL	-10.7	-7.0
GOLDENTREE	N/A	21.0
SOURCE: BLOOMBERG NEWS		

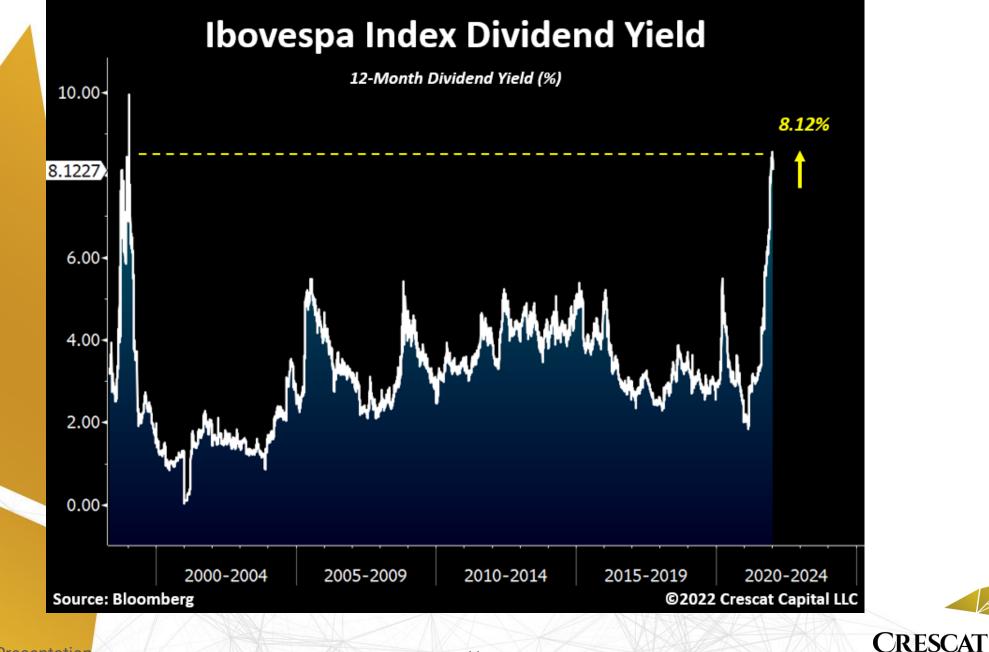





THE VALUE OF GLOBAL MACRO INVESTING

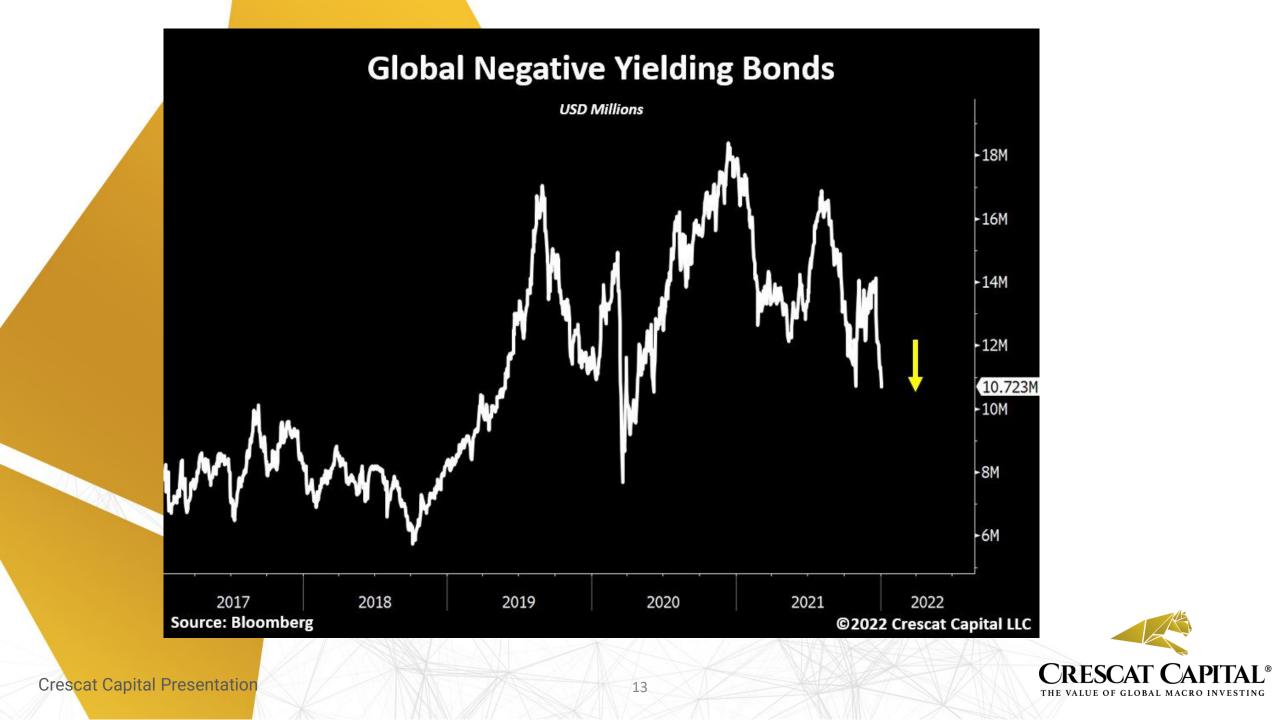




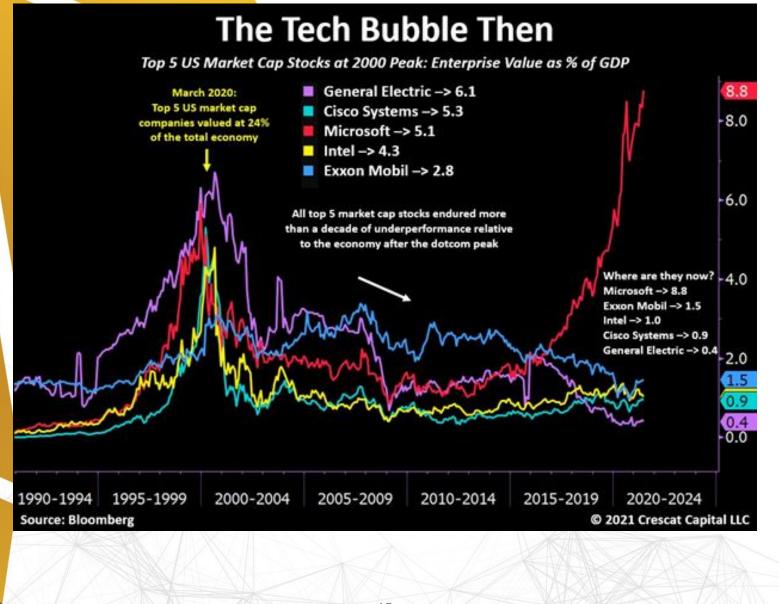


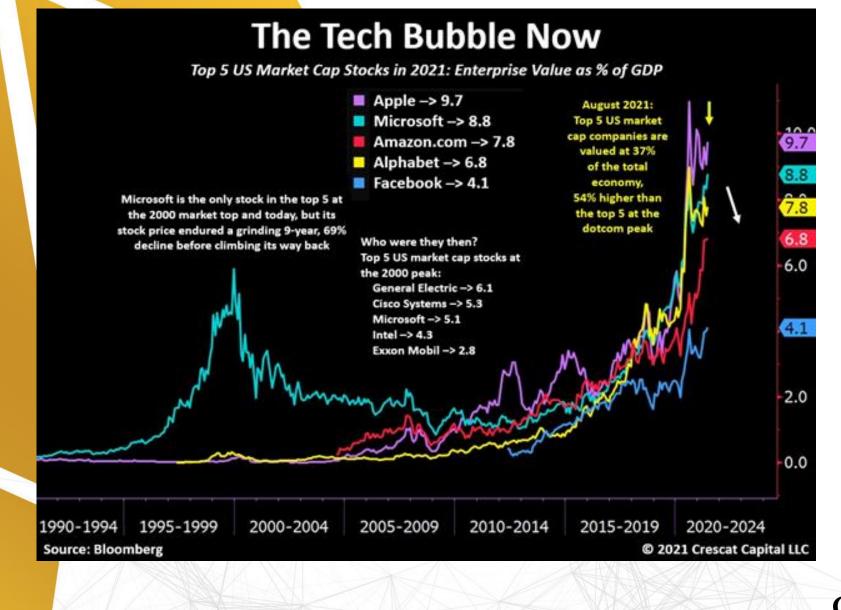
FAL®

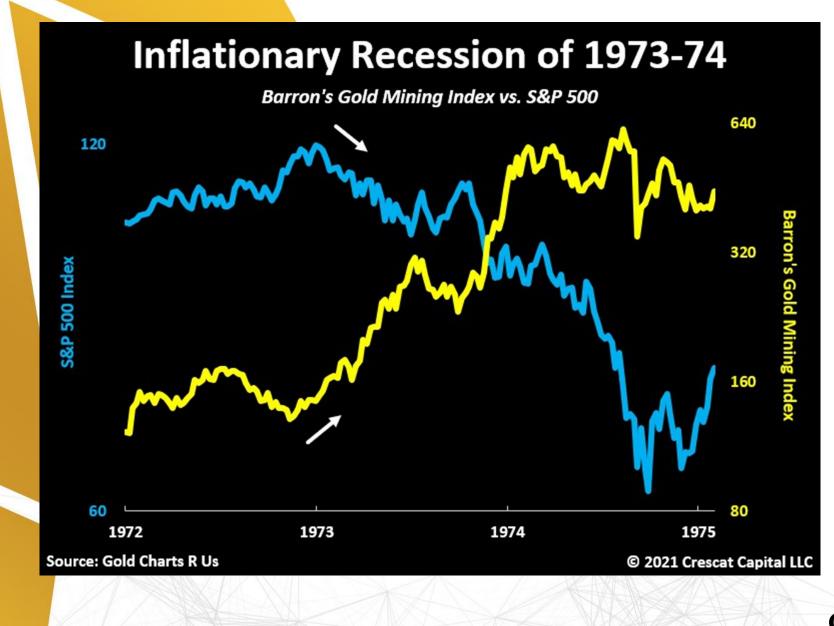

CRESCAT CA ΆL® THE VALUE OF GLOBAL MACRO INVESTING


11

THE VALUE OF GLOBAL MACRO INVESTING


Issuances of Treasury Bonds & Notes





FAL®

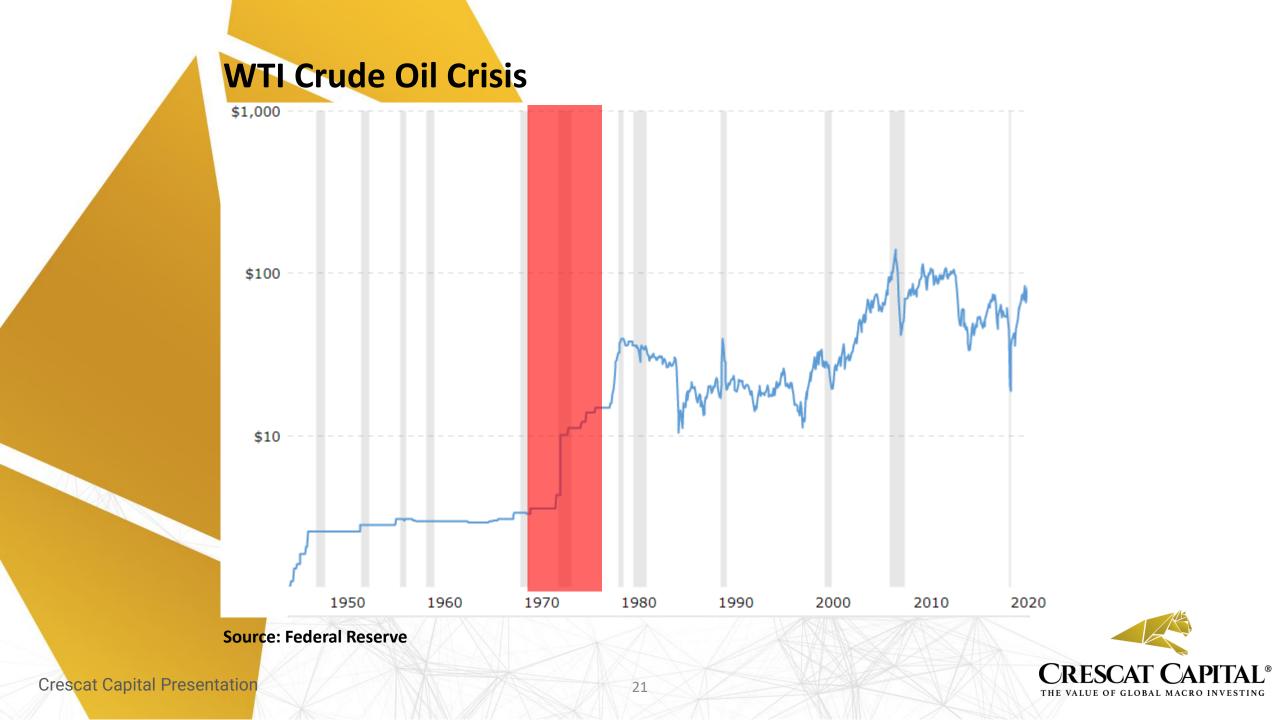
CRESCAT CAPITAL

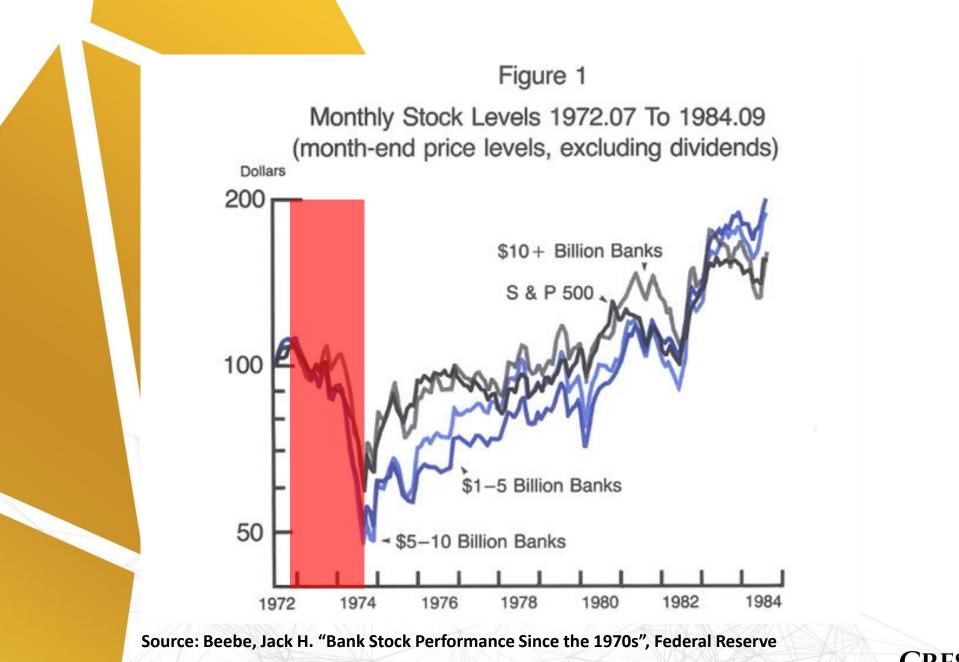
Gold Monthly Return %

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ct	Nov	Dec
20 Yr Avg	3.17	1.20	56	1.16	.16	01	.90	2.33	.73	16	.95	1.27
2021	-2.67	-6.15	-1.52	3.60	7.79	-7.17	2.49	03	-3.12	1.50	50	3.08
2020	4.74	22	54	6.93	2.60	2.93	10.94	41	-4.17	37	-5.42	6.83
2019	3.02	60	-1.59	68	1.72	7.96	.30	7.54	-3.15	2.75	-3.24	3.64
2018	3.25	-1.99	.54	76	-1.28	-3.54	-2.27	-1.88	86	2.01	.47	5.08
2017	5.51	3.12	.06	1.53	.05	-2.15	2.24	4.10	-3.15	65	.28	2.18
2016	5.38	10.77	48	4.93	-6.05	8.77	2.22	-3.13	.53	-2.94	-8.14	-2.19
2015	8.39	-5.50	-2.44	.07	.52	-1.53	-6.53	3.57	-1.75	2.42	-6.77	34
2014	3.57	6.58	-3.20	.59	-3.25	6.21	-3.37	.37	-6.15	-2.91	47	1.46
2013	70	-5.05	1.13	-7.56	-6.02	-11.04	7.33	5.30	-4.75	45	-5.27	-4.13
2012	11.05	-2.36	-1.69	20	-6.26	2.37	1.07	4.79	4.75	-2.91	33	-2.31
2011	-6.24	5.90	1.48	9.18	-1.79	-2.31	8.46	12.20	-11.05	5.60	1.85	-10.39
2010	-1.44	3.37	39	5.91	3.16	2.14	-4.94	5.62	4.90	3.89	1.97	2.54
2009	5.19	1.56	-2.44	-3.39	10.24	-5.38	2.97	29	5.94	3.75	12.83	-7.01
2008	11.08	5.16	-5.85	-4.29	1.02	4.39	-1.22	-9.07	4.79	-16.89	13.01	7.82
2007	2.59	2.47	83	2.21	-2.65	-1.64	2.26	1.35	10.44	7.15	-1.66	6.40
2006	10.04	-1.29	3.94	12.13	-1.41	-4.55	3.39	-1.48	-4.62	1.39	6.82	-1.74
2005	-3.62	3.09	-1.68	1.41	-3.95	4.37	-1.31	1.26	7.84	88	6.00	4.85
2004	-3.13	-1.57	7.65	-9.31	2.28	33	81	4.81	2.05	2.46	5.23	-2.77
2003	5.78	-4.94	-3.57	.33	7.65	-4.95	2.30	5.98	2.61	29	3.62	4.35
2002	1.29	4.95	2.06	1.92	5.87	-3.71	-3.47	3.03	3.45	-1.79	.13	9.40
2001	-2.35	.49	-3.44	2.36	.68	1.88	-1.55	2.91	6.87	-4.64	-1.88	1.66

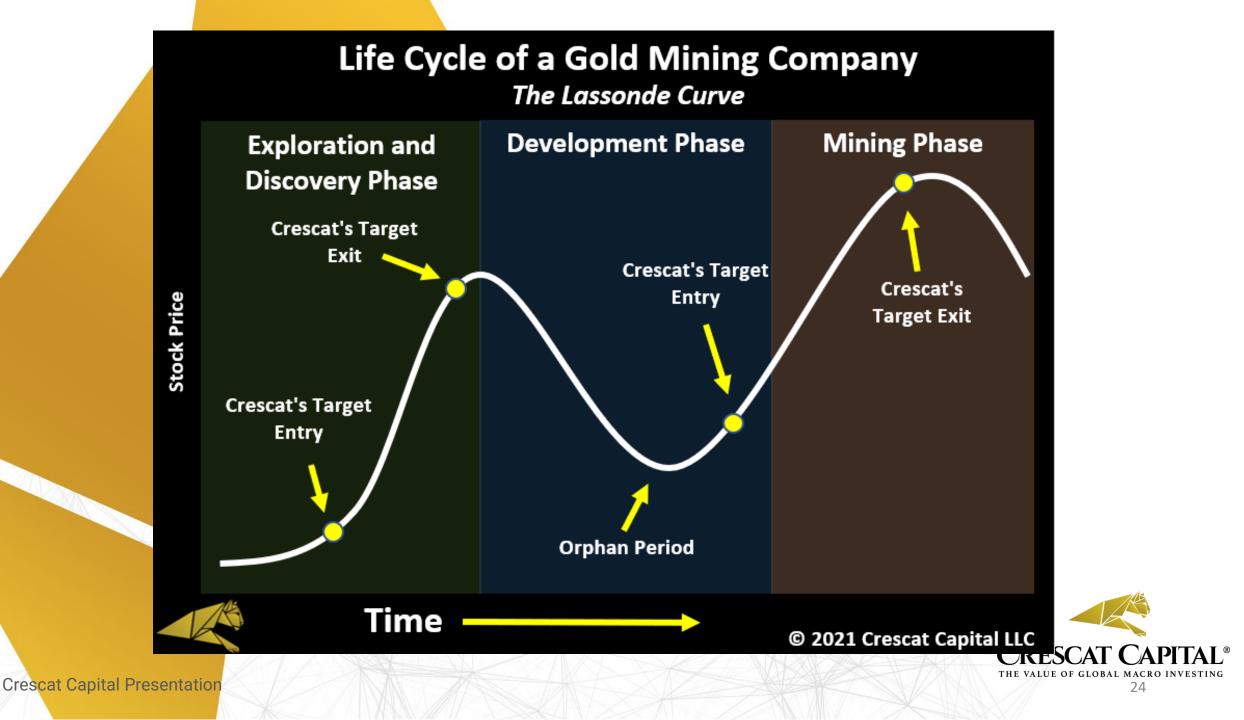
Source: Bloomberg

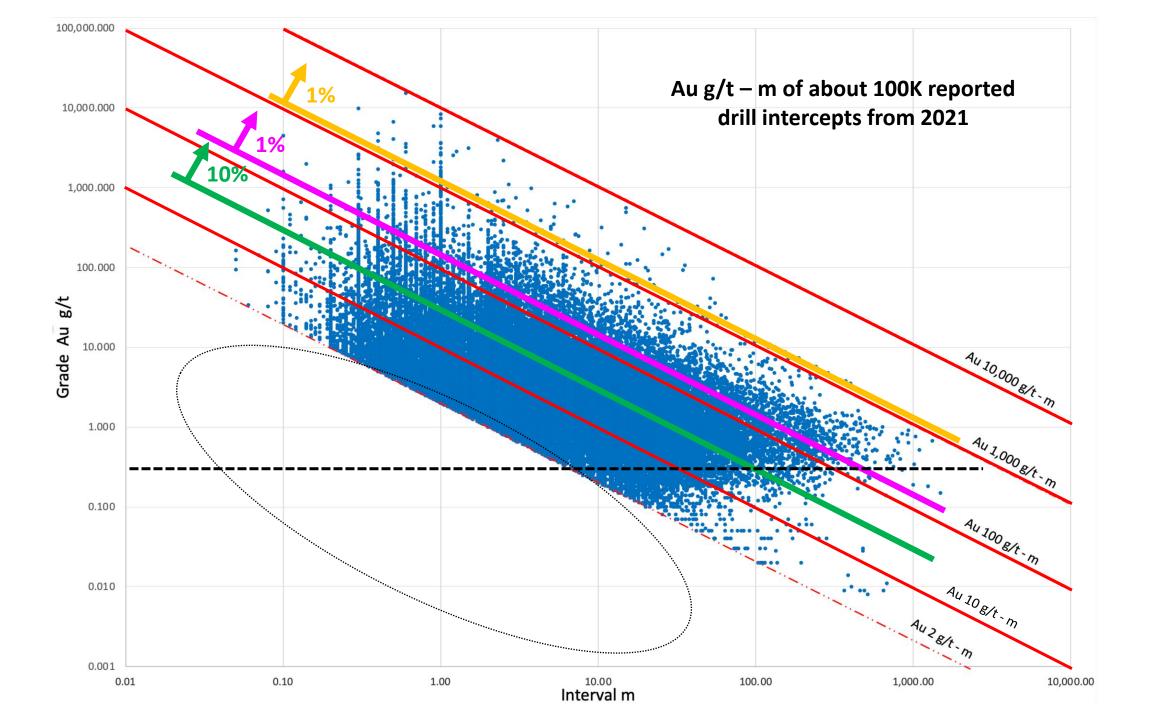
© 2022 Crescat Capital LLC


Oil Shock of 1973–74


October 1973–January 1974

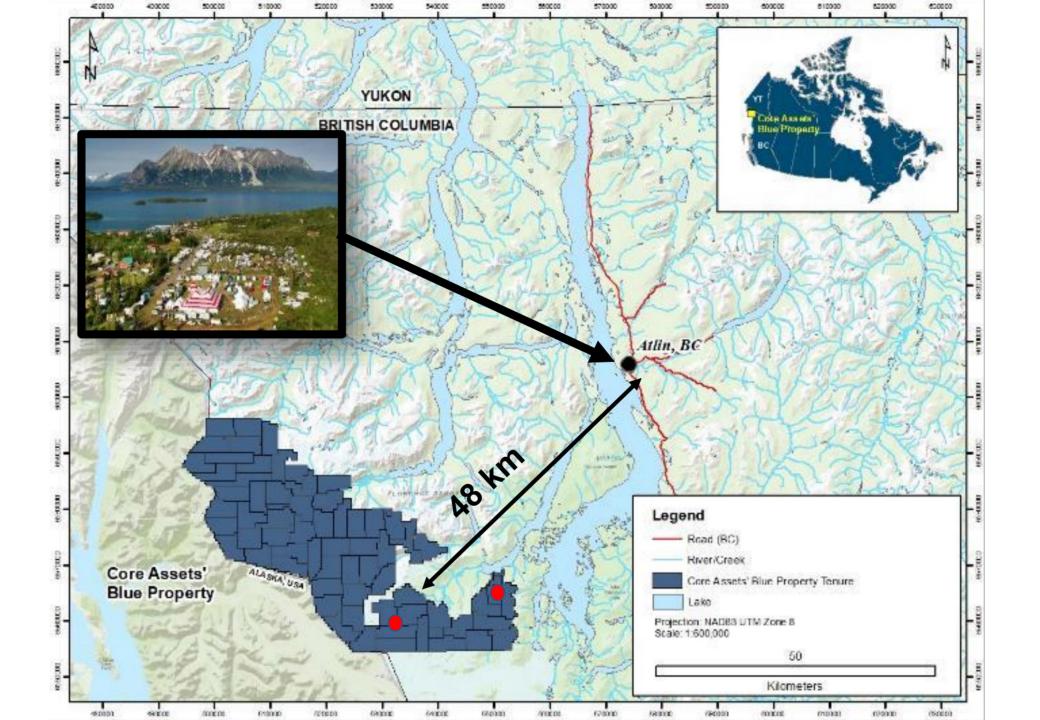
Source: Corbett, Michael, Federal Reserve Bank of Boston "Oil Shock of 1973-74"

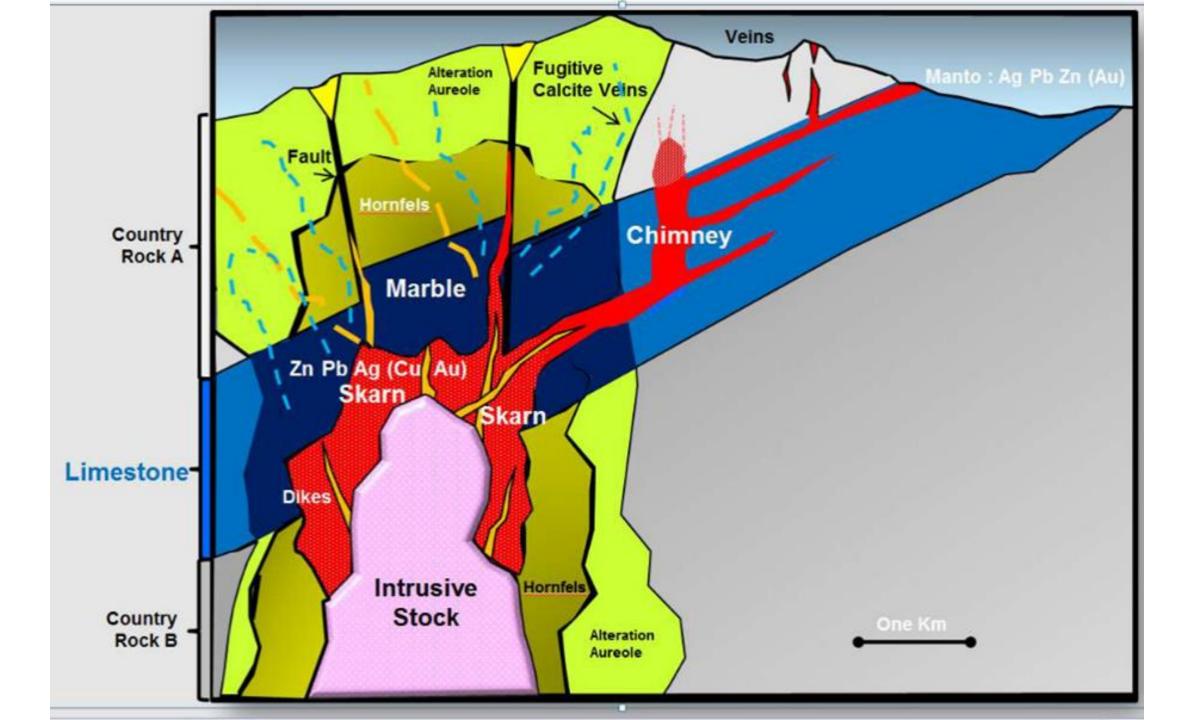

22



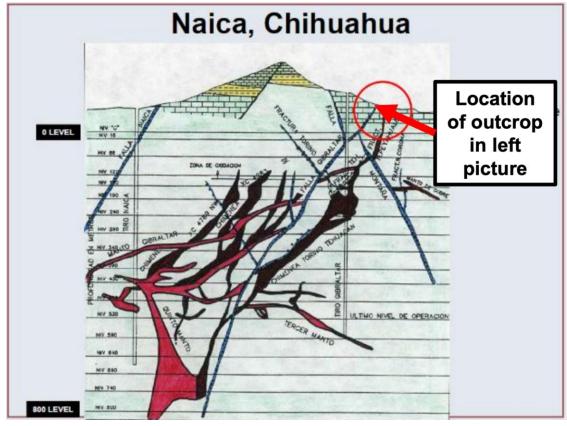
Crescat Capital LLC 1560 Broadway, Suite 2270 | Denver, CO 80202

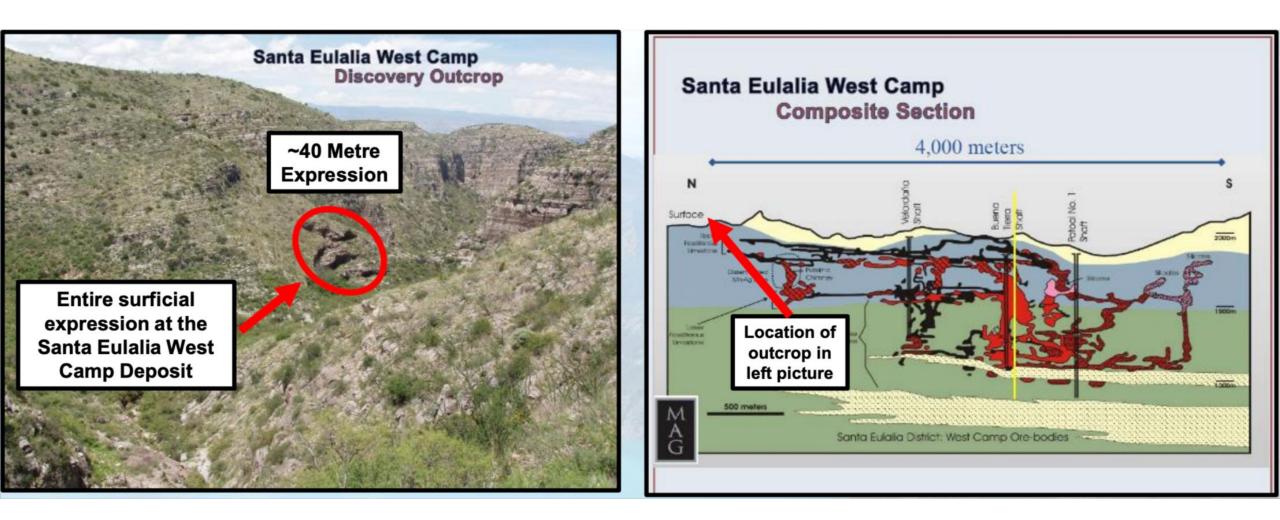
Marek Iwahashi Client Service Specialist (303) 271-9997 | miwahashi@crescat.net

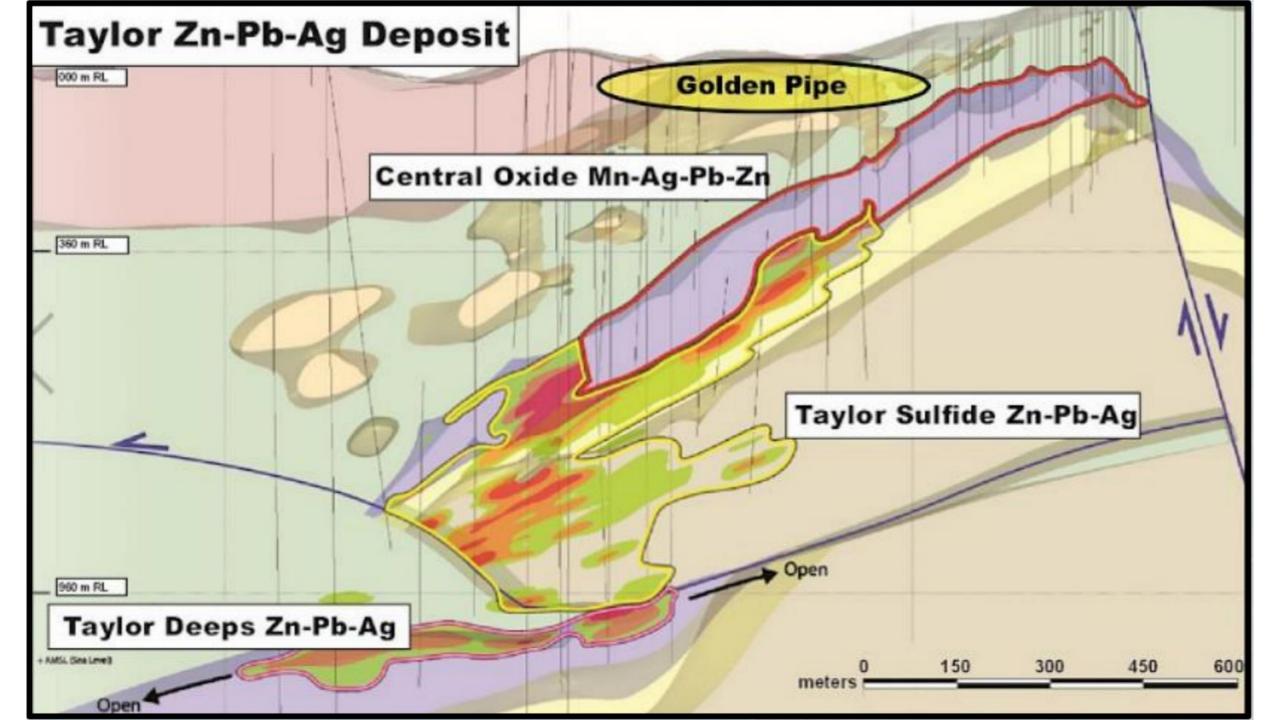

Shares Outstanding	58,287,479
Warrants	15,264,959
Options	3,635,000
Fully Diluted	77,187,438
Shareholders	Management/Directors: 36%

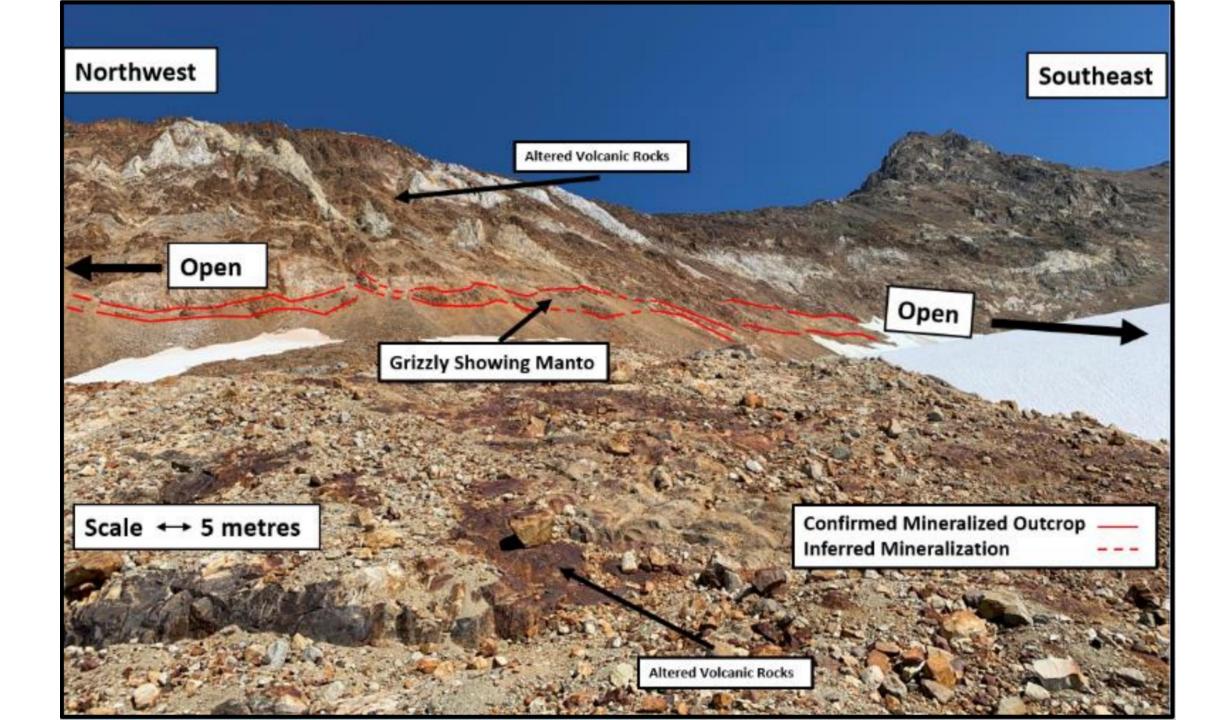


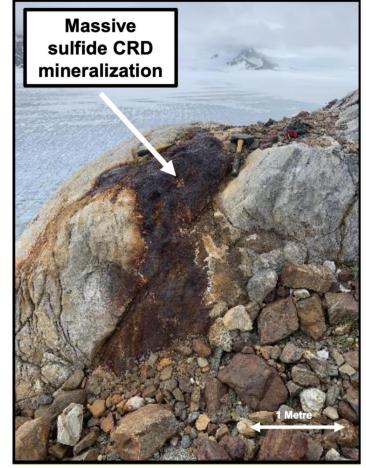
Nick Rodway, P.Geo President & CEO

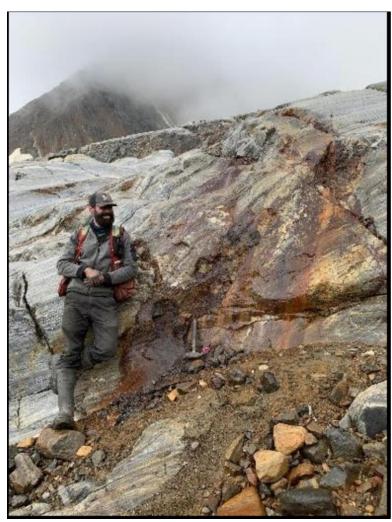

Mr. Rodway is a registered Professional Geologist. Mr. Rodway holds a Bachelor of Science in geology at Memorial University of Newfoundland and a Masters Degree at Queens University in Earth and Energy Resource Leadership. He has spent over 10 years working with Canadian exploration companies.

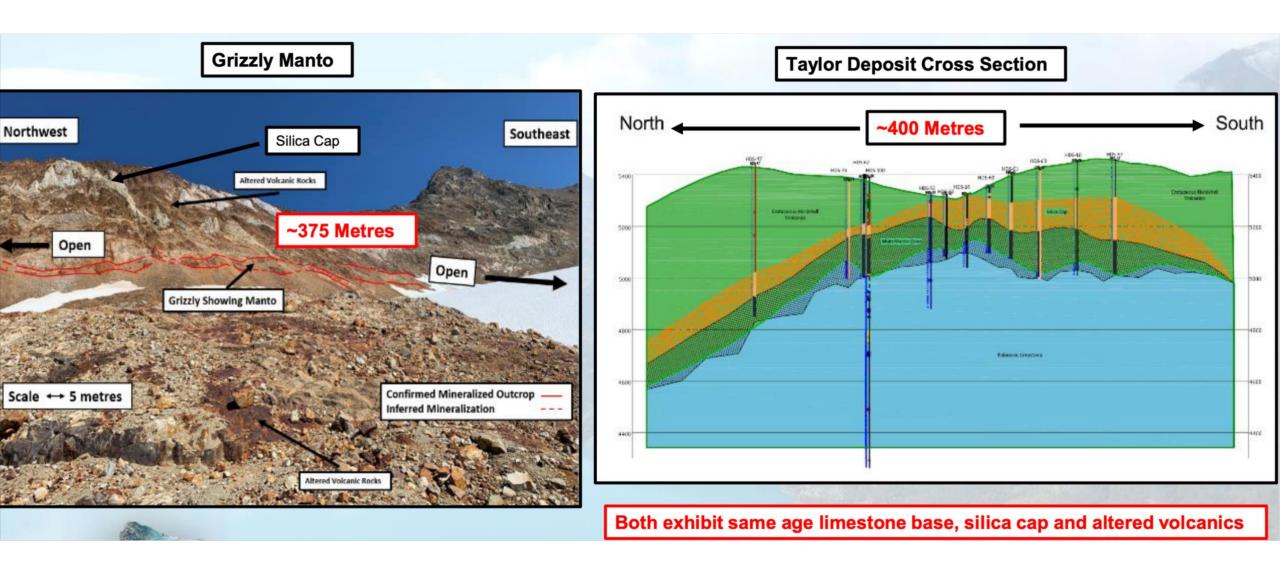

Nick Specializes in project generation and project financing . He is also a Director on several other publicly traded exploration and mining companies.

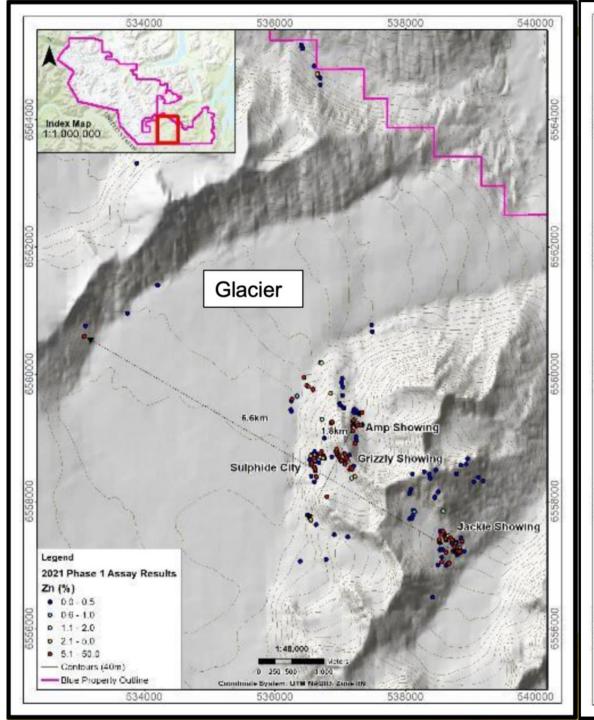


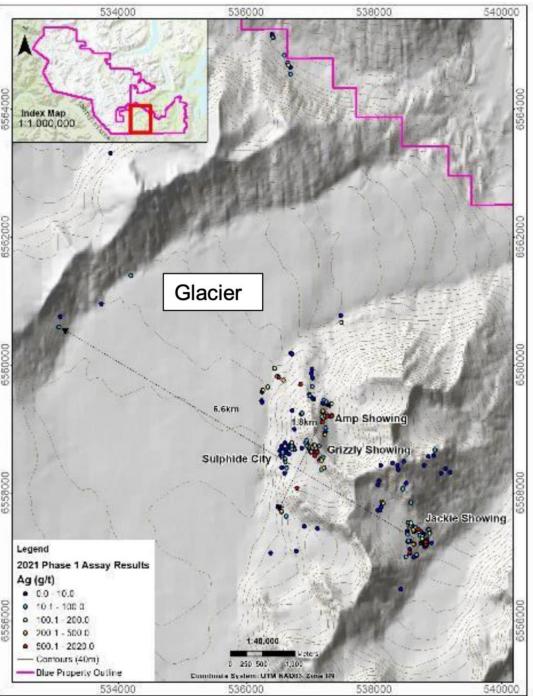


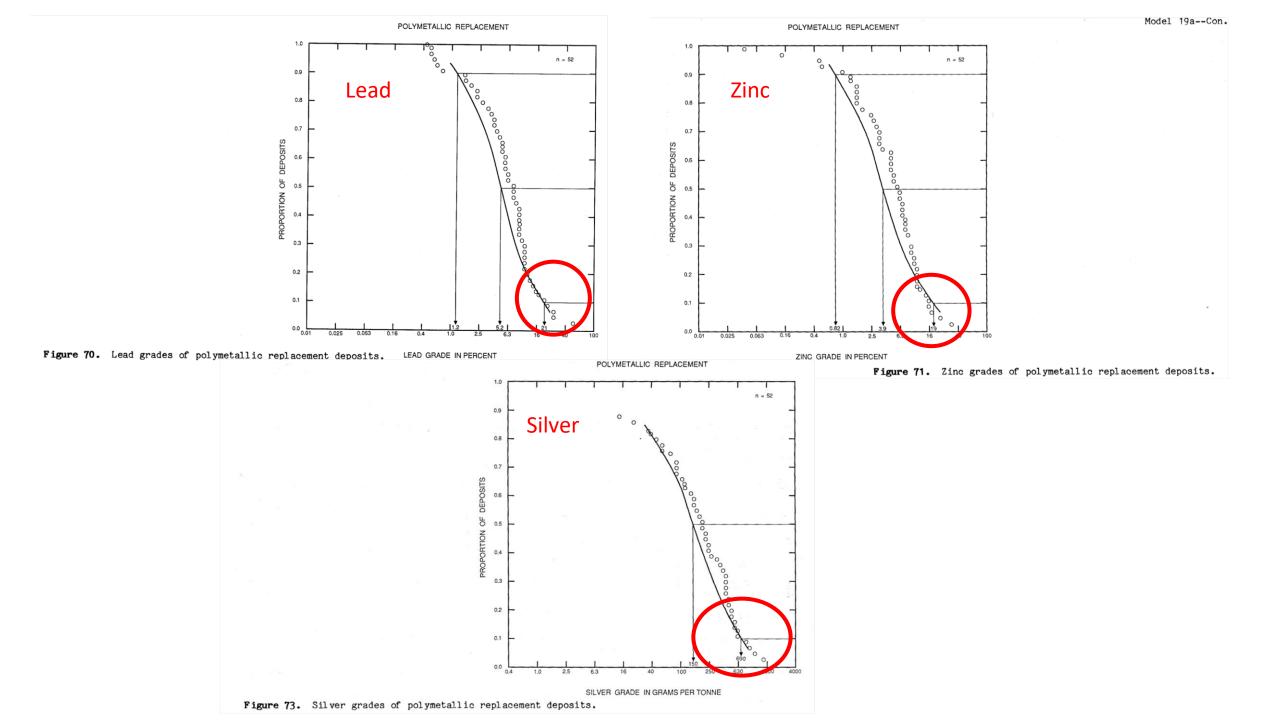


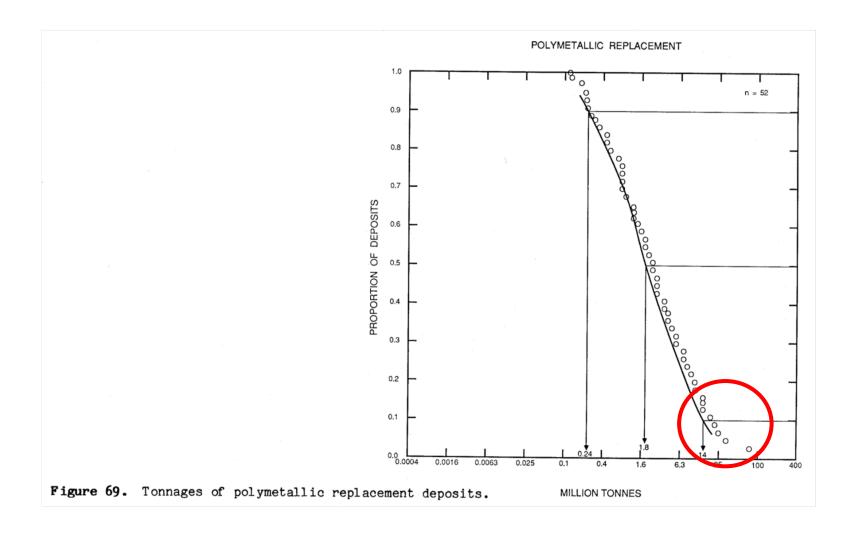


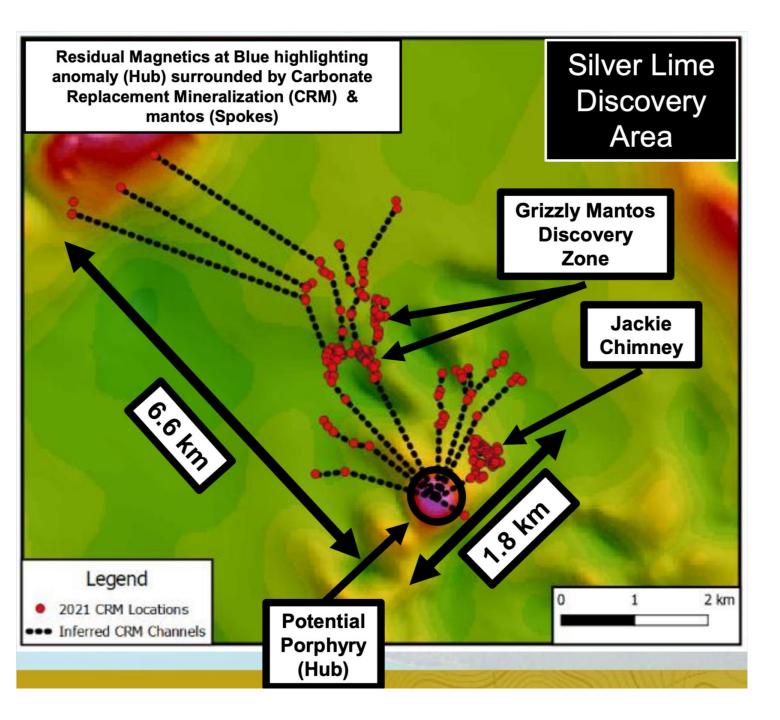


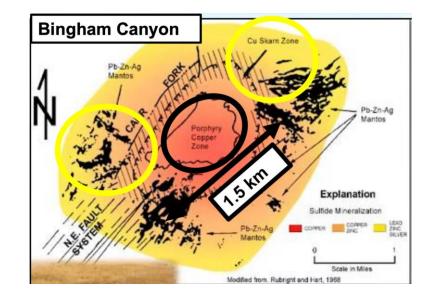




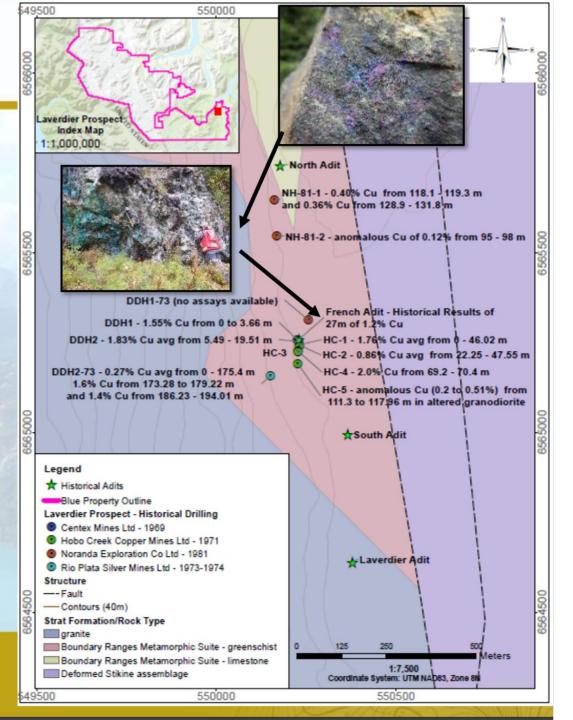




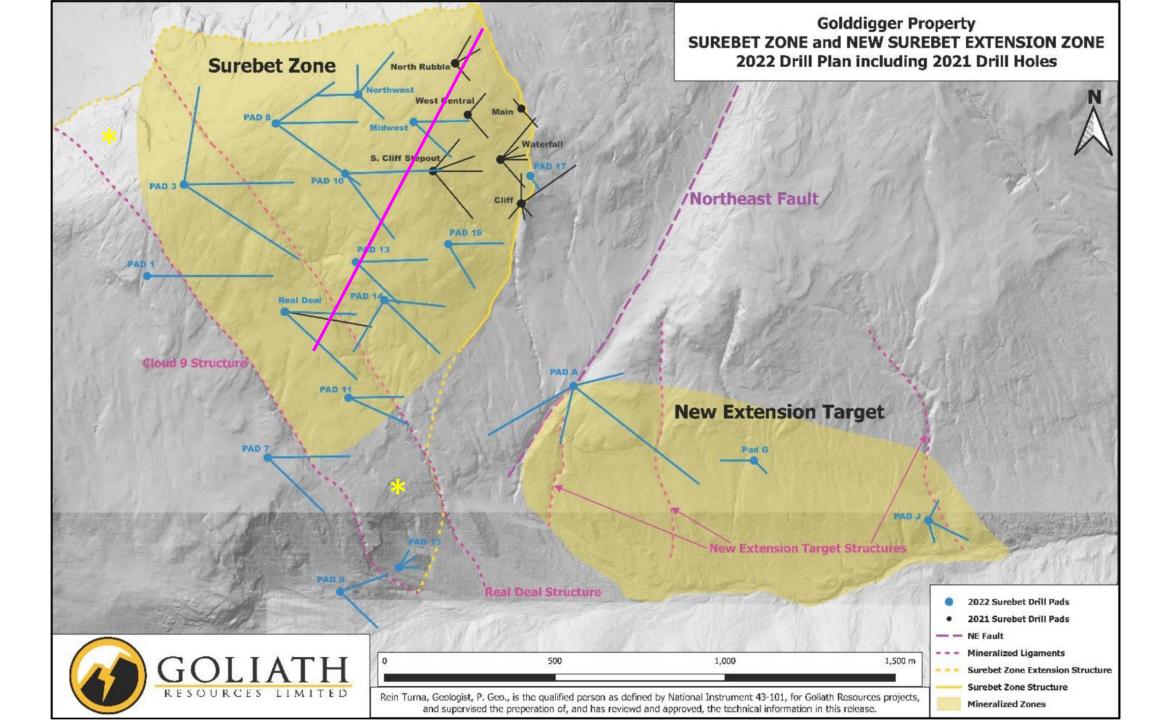


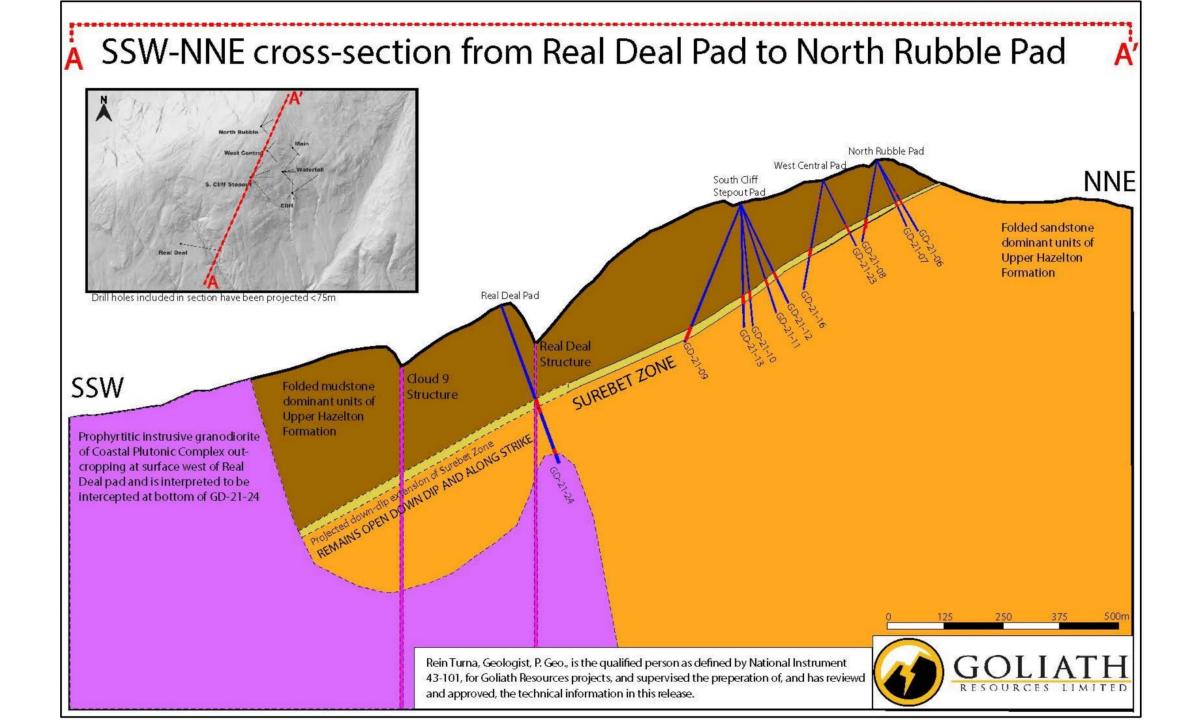


Sample		F	No. of Long	Sample	Ag	Cu	Pb	Zn	Au
ID	Area	Easting	Northing	Туре	(g/t)	(%)	(%)	(%)	(g/t)
152014	Jackie	538559	6557069	Outcrop	2020	0.16	12.85	2.90	0.16
152027	Jackie	538687	6557430	Outcrop	1090	2.00	>20.0	5.73	0.1
152030	Jackie	538747	6557315	Outcrop	172	0.67	11.80	9.38	0.02
152031	Jackie	538746	6557287	Outcrop	193	0.73	13.80	11.35	0.01
152033	Jackie	538764	6557207	Subcrop	473	0.19	9.64	9.15	0.01
152174	Jackie	538612	6557421	Outcrop	277	0.82	11.50	15.70	0.03
152190	Jackie	538613	6557197	Outcrop	341	0.24	11.90	10.15	0.01
152197	Jackie	538810	6557197	Outcrop	1530	0.23	>20.0	14.60	0.02
152199	Jackie	538809	6557222	Outcrop	328	0.53	17.20	5.60	0.02
152227	Jackie	538806	6557236	Outcrop	593	1.86	>20.0	3.48	0.1
152228	Jackie	538819	6557233	Outcrop	417	0.96	17.50	2.86	0.13
152136	Grizzly	537110	6558638	Outcrop	354	0.49	19.15	4.74	0.2
152137	Grizzly	537112	6558639	Outcrop	672	1.55	14.20	1.75	0.01
152139	Grizzly	537104	6558666	Outcrop	9.8	0.19	0.08	>30	0.01
152143	Grizzly	537073	6558741	Outcrop	336	0.14	3.29	8.22	0.01
152154	Grizzly	536976	6558725	Outcrop	81.7	1.15	0.01	9.17	0.01
152164	Grizzly	537218	6558393	Outcrop	424	0.03	8.52	3.46	1.03
152176	Grizzly	537015	6558644	Outcrop	481	0.34	0.81	8.58	0.02
152179	Grizzly	537059	6558622	Outcrop	87.5	0.67	0.20	13.40	0.02
152181	Grizzly	537067	6558598	Outcrop	113	0.40	0.48	25.10	0.01
152182	Grizzly	537067	6558591	Outcrop	83.2	0.32	0.22	24.30	0.01
152183	Grizzly	537069	6558584	Outcrop	561	0.42	2.35	9.16	0.02
152186	Grizzly	537148	6558496	Outcrop	127	0.59	0.20	27.10	0.01
152188	Grizzly	537155	6558530	Outcrop	31	0.37	0.02	24.40	0.06
152189	Grizzly	537181	6558510	Outcrop	273	0.97	13.90	13.45	0.01
152086	Sulphide City	536709	6558785	Outcrop	122	1.04	0.96	12.45	0.16
152096	Sulphide City	536613	6558481	Outcrop	25.8	0.63	0.00	11.15	0.02
152098	Sulphide City	536565	6558607	Outcrop	55	0.96	0.59	5.39	0.01
152113	Sulphide City	536692	6558703	Outcrop	60.4	0.85	0.40	2.81	0.01
152130	Sulphide City	536625	6558398	Outcrop	97.6	2.60	0.00	1.35	0.02
152056	Amp	537189	6559107	Float	689	0.17	14.50	17.55	0.08
152058	Amp	537228	6559203	Outcrop	497	0.44	2.95	0.13	2.98
152060	Amp	537196	6559282	Outcrop	336	0.15	13.65	8.34	0.16
152076	Amp	537335	6559205	Float	931	0.01	0.40	0.14	6.75
152079	Amp	537226	6558915	Outcrop	290	0.04	8.68	7.42	0.07
152035	Property Wide	538944	6558673	Outcrop	65	9.92	0.08	0.08	1.82
152036	Property Wide	538944	6558673	Outcrop	18.7	3.54	0.02	0.02	0.62
152133	Property Wide	536790	6558075	Outcrop	890	0.05	>20.0	13.05	0.12
152217	Property Wide	536661	6564685	Outcrop	110	0.08	0.02	0.01	1.81
152231	Property Wide	533074	6560598	Outcrop	38.2	0.31	0.09	>30	0.11
152236	Property Wide	536576	6559764	Outcrop	234	0.32	17.80	19.65	0.01
152240	Property Wide	536260	6559610	Outcrop	374	0.08	12.50	13.95	0.02
152243	Property Wide	536509	6559802	Outcrop	857	0.27	12.25	3.72	0.01



Laverdier Historic Drilling


- Historical Drill Highlights:
 - HC-1: 46.02m from surface at 1.76% Cu
 - DDH2-73: 175.4m from surface of 0.27% Cu
- Sample Highlights:
 - 15 of 18 grab samples returned copper values of 1.25% to 8.36%
 - Both north and south sampling locations (500m apart) along the Llewelyn Fault yielded gold assays averaging 1.0 g/t Au with Ag as high as 42.0 g/t
- Minimal drilling in granodiorite, heavy potassic alteration noted in historical core log indicating proximity to a potential porphyry stock
- Pursuing a CRD-Porphyry model

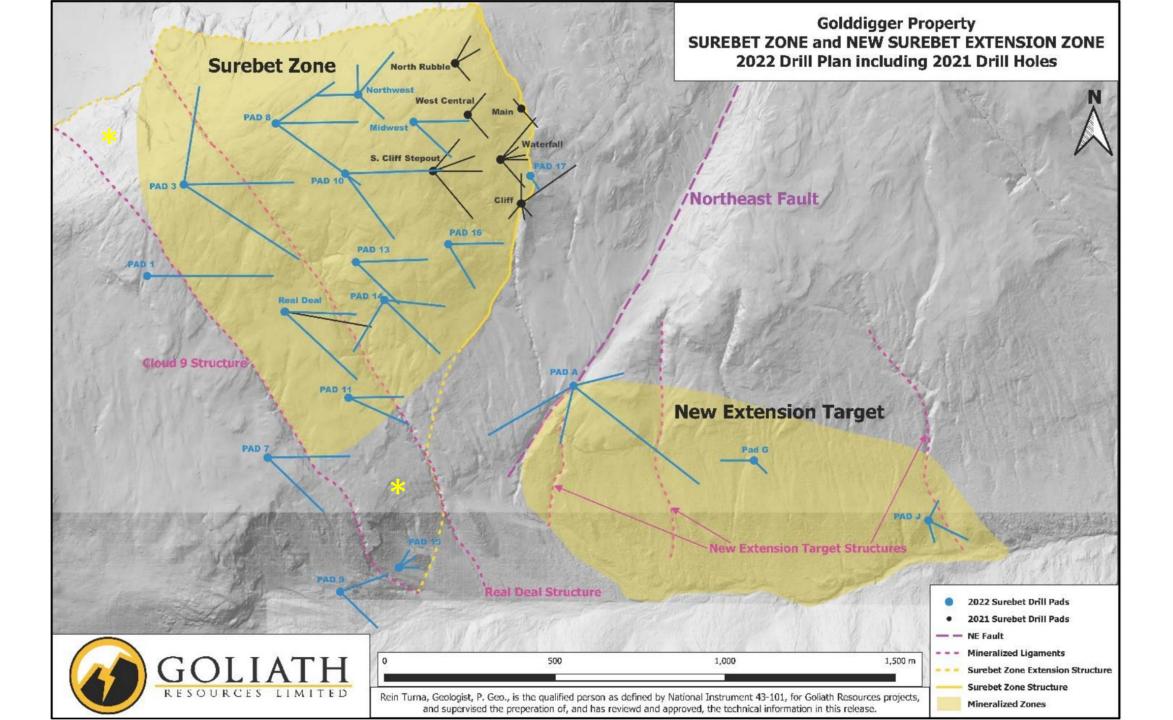


Goliath Reports 100% of all 24 Holes Drilled Intersected Significant High-Grade Gold-Silver Over 1 km of Strike and 1.1 km Down Dip on Surebet Discovery

The average grade and width from all 24 holes assayed 6.29 gpt AuEq (4.35 gpt Au and 104.94 gpt Ag) over 5.87 meters* respectively.

				North R	ubble Pad				
GD-21-06	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	87.32	90.15	2.83	0.75	46.81	0.02	0.37	0.36	1.73
Interval	116.90	120.80	3.90	1.40	88.37	0.02	0.31	0.13	2.78
Including	116.90	118.80	1.90	2.26	168.93	0.04	0.63	0.25	4.91
GD-21-07	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	110.00	117.62	7.62	0.43	88.95	0.01	0.19	0.20	1.80
Including	114.00	117.62	3.62	0.77	152.22	0.02	0.26	0.31	3.06
GD-21-08	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	134.00	147.60	13.60	1.16	54.00	0.02	0.62	0.74	2.56
Including	134.62	145.60	10.98	1.36	64.56	0.02	0.75	0.89	3.04
Including	134.62	137.60	2.98	2.06	158.81	0.02	1.90	1.48	5.75
and	140.60	145.60	5.00	1.70	37.32	0.02	0.44	0.98	2.97
Interval	172.00	178.10	6.10	5.95	286.50	0.02	0.40	0.31	10.01
Including	172.00	175.00	3.00	11.74	562.79	0.02	0.58	0.57	19.60
Including	172.00	173.60	1.60	21.94	1041.31	0.04	1.07	1.05	36.48

	Cliff Stepout Pad												
GD-21-09	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	349.00	358.00	9.00	5.44	83.84	0.02	0.55	0.66	7.15				
Including	350.08	354.84	4.76	10.02	152.17	0.03	0.98	1.11	13.06				
Including	350.08	353.00	2.92	15.77	232.00	0.03	1.41	1.54	20.28				
GD-21-10	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	227.00	232.00	5.00	3.93	33.96	0.02	0.35	0.41	4.77				
Including	227.00	229.00	2.00	9.04	42.70	0.02	0.37	0.52	10.06				
GD-21-11	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	188.00	189.60	1.60	4.44	106.56	0.02	1.36	1.25	7.10				
GD-21-12	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	172.94	176.00	3.06	1.41	17.64	0.02	0.23	0.53	2.07				
GD-21-13	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	224.51	229.00	4.49	5.96	28.05	0.01	0.54	0.28	6.72				
Including	224.51	225.70	1.19	21.69	86.71	0.02	1.64	0.62	23.86				

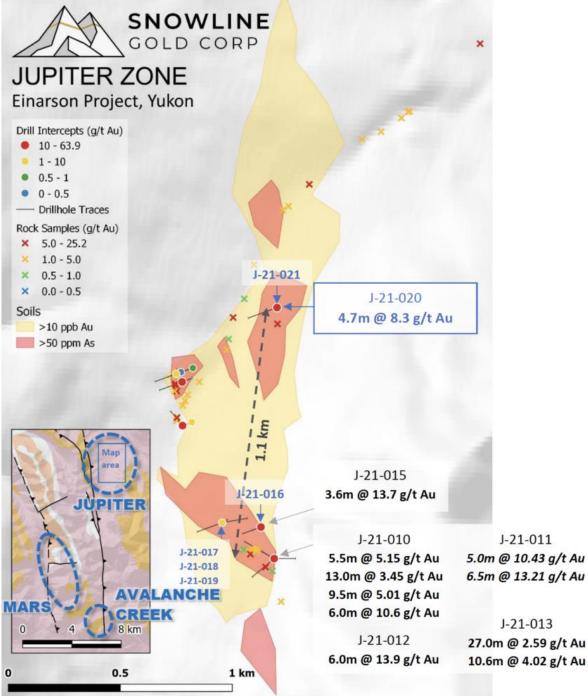

	Cliff Pad												
GD-21-01	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	36.90	48.25	11.35	2.03	27.71	0.02	0.40	0.33	2.73				
Including	36.90	40.00	3.10	6.17	54.07	0.04	1.11	0.99	7.85				
GD-21-02	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	28.50	42.00	13.50	1.35	68.27	0.03	0.39	0.41	2.65				
Including	28.50	33.50	5.00	2.83	70.29	0.07	0.84	0.01	4.57				
GD-21-03	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	66.78	102.50	35.72	4.46	122.13	0.02	0.28	0.31	6.37				
including	66.78	71.30	4.52	24.97	458.10	0.12	0.74	0.80	31.88				
and	83.50	88.50	5.00	3.55	275.36	0.03	0.32	0.35	7.53				
and	96.40	102.50	6.10	2.95	71.15	0.01	0.52	0.65	4.41				
GD-21-04	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	42.19	75.50	33.31	1.31	24.22	0.01	0.20	0.14	1.80				
Including	44.25	47.65	3.40	8.86	90.82	0.03	1.12	0.55	10.85				
and	61.58	62.60	2.12	2.67	51.68	0.01	0.57	0.50	3.87				
GD-21-05	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*				
Interval	50.50	56.88	6.38	8.06	316.66	0.03	0.42	0.42	12.60				
Including	51.54	55.20	3.66	13.86	521.86	0.04	0.58	0.61	21.25				
Interval	61.88	65.06	3.18	2.02	41.05	0.01	0.43	0.36	2.94				
Including	62.48	65.06	2.58	2.47	45.59	0.01	0.50	0.40	3.51				

	Main Pad													
GD-21-14	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*					
Interval	2.35	8.69	6.34	2.85	154.45	0.01	0.89	0.36	5.43					
Including	2.35	7.00	4.65	3.33	196.97	0.01	1.12	0.47	6.61					
Including	2.35	4.35	2.00	4.24	309.15	0.02	1.83	0.54	9.30					
GD-21-21	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*					
Interval	4.50	10.04	5.54	7.97	105.75	0.01	0.51	0.36	9.77					
Including	5.00	10.04	5.04	8.70	106.66	0.02	0.53	0.38	10.54					
Including	6.50	9.00	2.50	13.38	135.98	0.02	0.76	0.41	15.71					
Including														

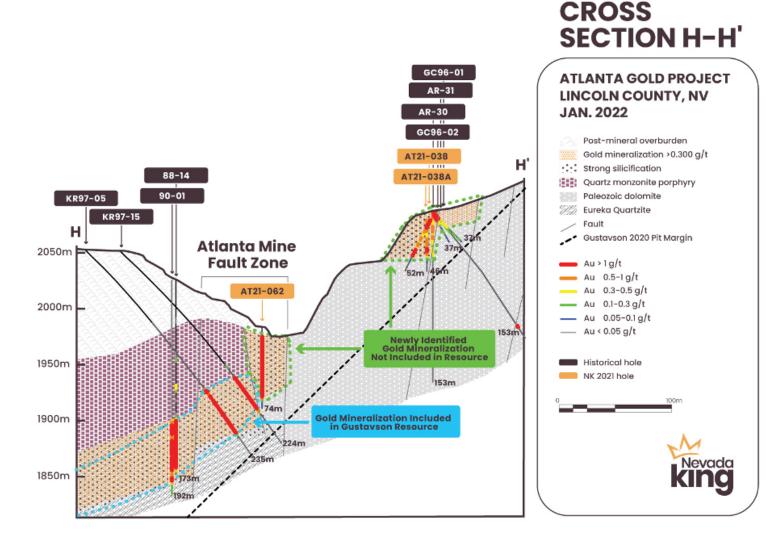
				Water	fall Pad				
GD-21-15	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	81.00	84.72	3.72	0.49	28.31	0.01	0.26	0.17	1.07
GD-21-17	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	86.00	87.00	1.00	0.56	71.65	0.02	0.87	1.07	2.48
GD-21-18	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	85.37	96.50	11.13	1.00	31.05	0.01	0.34	0.40	1.79
Including	85.37	93.00	7.91	1.24	39.18	0.01	0.44	0.51	2.24
GD-21-19	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	89.96	97.00	7.04	2.33	98.29	0.01	0.44	0.55	4.12
Including	89.96	92.50	2.54	5.25	179.78	0.02	0.94	1.29	8.72
GD-21-20	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	107.72	117.18	9.46	1.97	118.17	0.03	0.46	0.33	3.91
Including	108.00	110.00	2.00	6.88	210.47	0.07	1.27	0.62	10.58
Interval	121.65	126.00	4.35	7.16	25.23	0.01	0.30	0.36	7.82
GD-21-22	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Interval	116.04	120.00	3.96	13.87	342.14	0.04	1.08	1.08	19.40
Including	116.04	118.13	2.09	25.80	623.58	0.06	1.86	1.83	35.75
Including	116.04	117.30	1.26	40.27	695.11	0.08	2.70	2.57	51.93

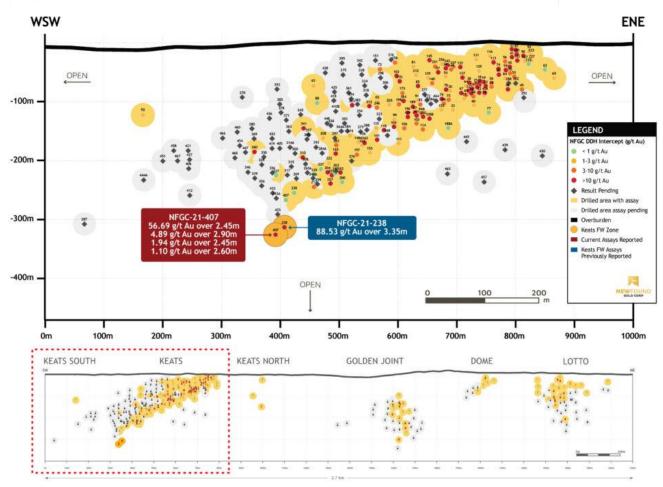
	West Central Pad													
GD-21-16	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*					
Interval	47.65	48.30	0.65	2.60	5.80	0.01	0.00	0.01	2.69					
Interval	179.00	179.80	0.80	3.04	98.88	0.01	0.73	0.20	4.75					
Interval	191.50	194.00	2.50	1.44	60.14	0.01	0.85	0.87	3.08					
Including	192.00	194.00	2.00	1.69	63.20	0.01	0.89	0.93	3.42					
Including	192.00	193.00	1.00	1.83	93.30	0.02	1.40	1.57	4.53					
GD-21-23	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*					
Interval	115.00	116.00	1.00	2.75	87.00	0.02	0.43	0.32	4.26					
Interval	137.00	139.00	2.00	2.35	68.11	0.01	0.82	0.40	3.81					
Including	137.00	137.80	0.80	5.66	141.32	0.01	1.94	0.66	8.66					

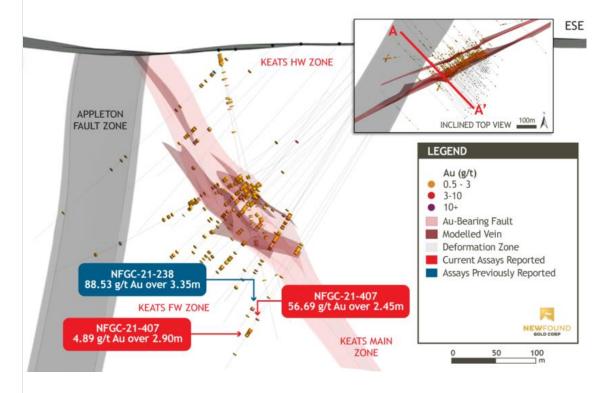
	Real Deal Pad													
GD-21-24	From (m)	To (m)	Interval (m)	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*					
Interval	275.00	293.00	18.00	2.13	5.46	0.01	0.07	0.17	2.35					
Including	275.00	287.00	12.00	2.96	5.61	0.01	0.07	0.16	3.17					
Including	275.00	276.00	1.00	5.60	6.30	0.02	0.06	0.27	5.89					
and	278.00	280.00	2.00	5.09	4.55	0.02	0.04	0.11	5.26					
and	285.00	287.00	2.00	8.66	20.00	0.02	0.26	0.55	9.38					
Interval	301.00	306.50	5.50	3.02	2.88	0.02	0.01	0.08	3.13					
Including	304.00	306.50	2.50	6.18	4.60	0.02	0.01	0.12	6.34					
Interval	386.00	388.49	2.49	4.08	6.64	0.01	0.01	0.01	4.20					
Including	387.00	388.49	1.49	6.50	10.83	0.02	0.02	0.01	6.68					

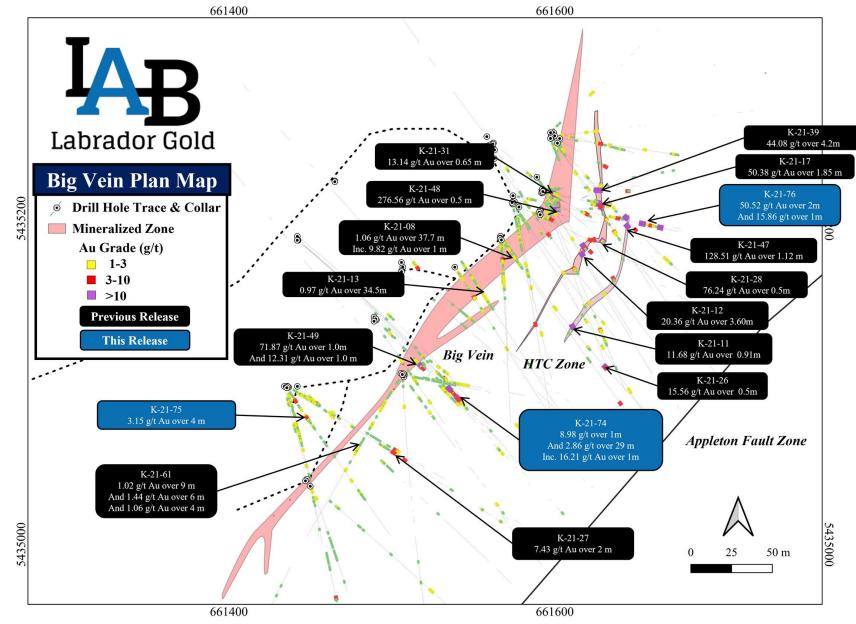

Sample ID	Zone	Au (gpt)	Ag (gpt)	Cu (%)	Pb (%)	Zn (%)	AuEq (gpt)*
Y608255	Lower Cliff	66.50	2295.00	0.01	7.44	1.07	99.73
Y607977	Extension	44.40	1629.00	5.22	2.24	0.02	75.04
Y608275	Extension	33.50	1232.00	4.10	3.12	0.80	57.97
Y607972		44.90	119.00	0.14	0.01	0.00	46.67
Y607957	Extension	20.20	22.70	0.00	0.16	2.17	21.82
Y608662	Lower Cliff	9.40	709.00	0.10	0.72	0.39	19.23
Y608664	Real Deal	5.60	358.00	0.01	9.16	7.46	18.22
Y607989	Extension	13.50	32.10	0.09	0.42	0.91	14.76
Y608212	Main	7.89	217.00	0.03	2.17	4.09	13.97
Y608258	Real Deal	2.97	437.00	0.05	8.32	1.18	12.71
Y607978	Extension	6.90	333.00	0.21	0.49	0.00	11.75
Y608282		10.30	17.70	0.00	0.02	0.16	10.64
Y607969		9.90	28.20	0.03	0.00	0.00	10.31
Y608268		1.24	99.20	1.19	4.19	6.19	9.76
Y607955		9.20	10.60	0.01	0.34	0.27	9.64
Y608256	Lower Cliff	3.18	146.00	0.07	2.31	1.98	7.26
Y608684		0.16	12.00	0.02	0.01	10.72	6.54
Y607979	Extension	1.41	99.50	0.03	0.67	4.85	5.82
Y608251	Lower Cliff	1.65	148.00	0.03	1.04	2.58	5.52
Y608656	Lower Cliff	4.60	41.20	0.02	0.04	0.27	5.34
Y607984	Lower Cloud 9	3.57	52.80	0.03	0.68	1.26	5.30
Y608272	North Slope	0.09	4.90	0.00	0.11	8.81	5.29
Y608685		0.19	9.50	0.07	0.00	8.21	5.18
Y608367	Extension	4.78	1.10	0.01	0.00	0.00	4.82
Y607968		4.09	12.20	0.04	0.00	0.00	4.32
Y608364		0.97	152.00	0.02	1.31	1.21	4.18
Y608271	North Slope	2.79	33.70	0.02	1.03	0.28	3.85
Y608355		0.29	34.60	0.05	0.09	5.06	3.78
Y608252	Lower Cliff	0.49	18.10	0.04	0.00	4.93	3.63
Y608353	Extension	0.18	16.20	0.03	0.29	4.52	3.17
Y608257	Real Deal	0.73	14.80	0.04	0.19	3.08	2.85
Y608273	Extension	0.03	99.40	0.01	3.27	0.03	2.65

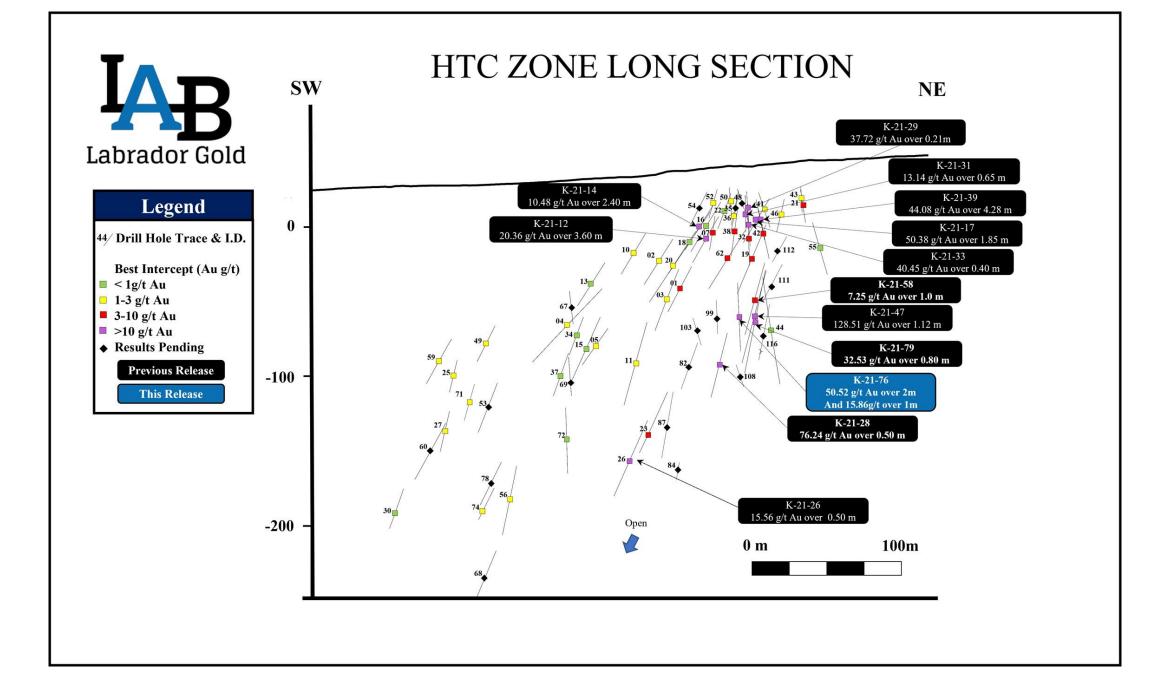
SNOWLINE GOLD CORP


SNOWLINE GOLD INTERSECTS 8.3 GRAMS PER TONNE GOLD OVER 4.7 METRES INCLUDING 22.1 GRAMS PER TONNE OVER 1.1 METRES IN 460 METER STEP-OVER AT ITS JUPITER ZONE, EINARSON

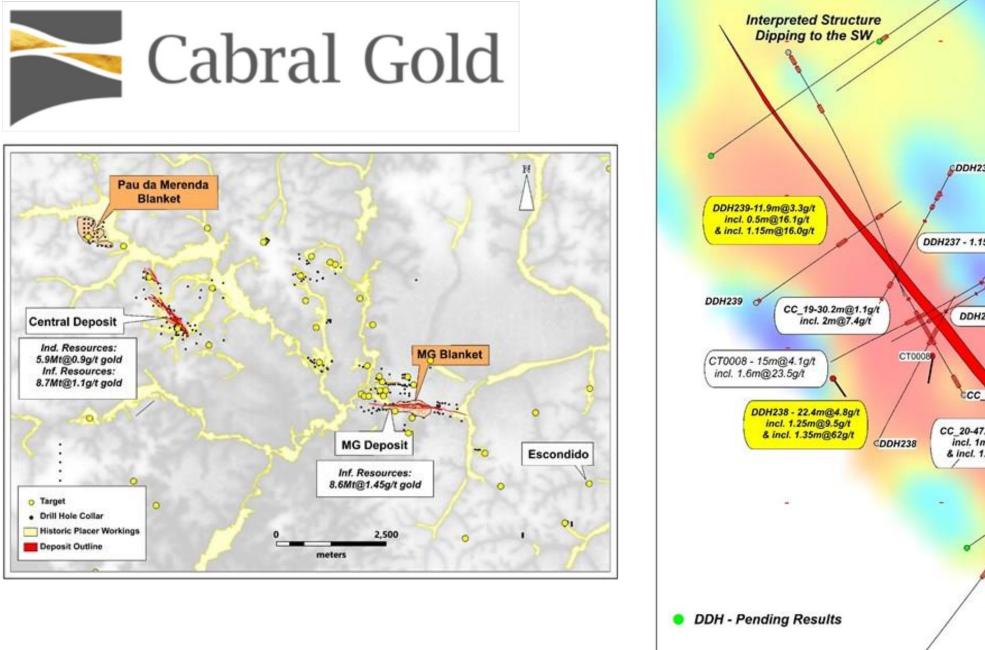


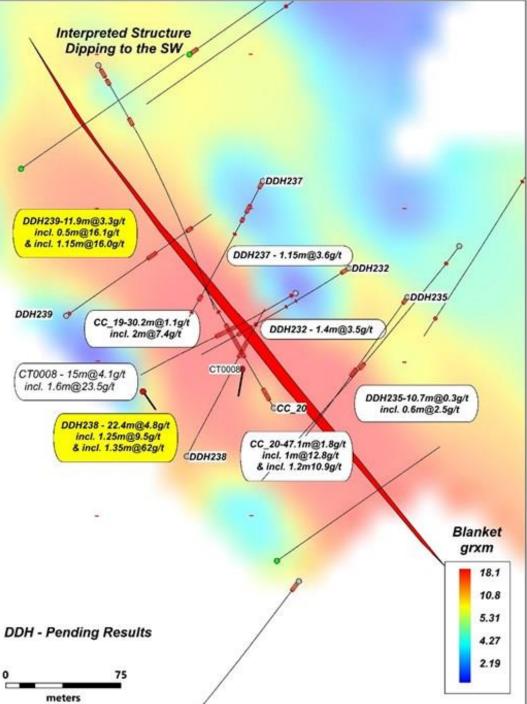

TSX-V: NKG \$0.37 OTCQX: NKGFF \$0.2984 NEVADA KING INTERCEPTS 5.34 G/T OF OXIDE GOLD OVER 54.9 METRES STARTING AT SURFACE IN A HOLE COLLARD WITHIN THE ATLANTA PIT, BATTLE MOUNTAIN TREND, NEVADA


\$ TSX-V: NFG \$7.77 \$ NYSE-A: NFGC \$6.1701



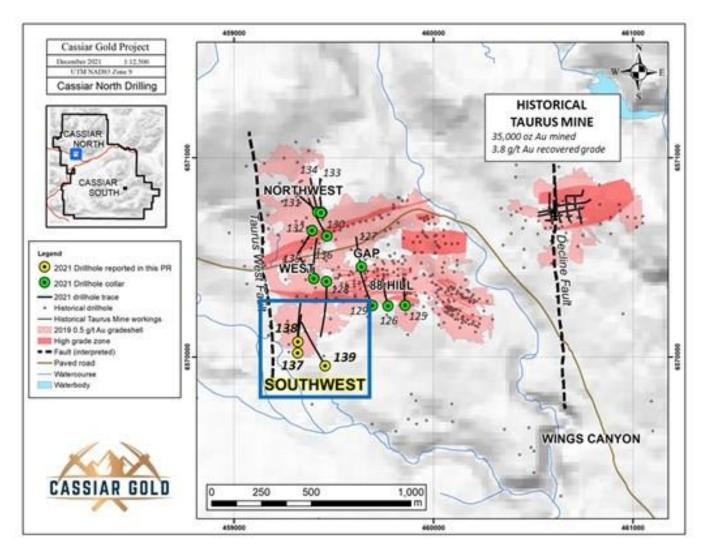
TSX-V: LAB OTCQX: NKOSF


TSX-V: B

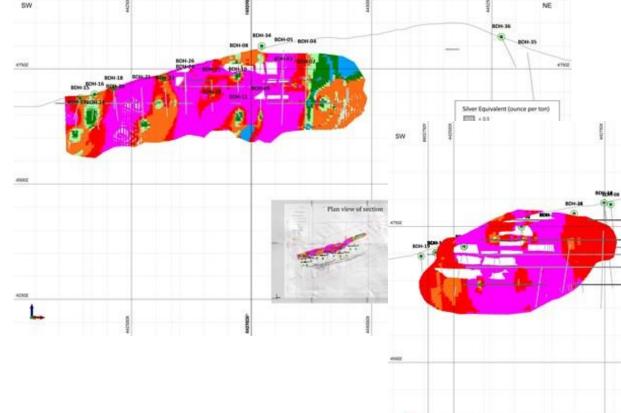

Diamond Drilling Resumed at Thompson Knolls Cu-Au-Mo project in Utah

Vancouver, BC, January 10, 2022 – BCM Resources Corporation (TSX-V: B), the "Company," is pleased to announce that Diamond Drilling has resumed at the Thompson Knolls ("TK") porphyry copper-gold-molybdenum project in southwestern Utah.

The Company's new drilling contractor Falcon Drilling, the "Contractor" has started drilling TK3a in the proximity of the previously drilled TK3, which reached copper-molybdenum mineralization in the interval between 452 m and 558 m. The drill was stopped in mineralization due to complications experienced by the previous drillers. The mineralization intercepted in this drill hole has a distinctive porphyry style with dominant copper mineralization within the marbleized host rock dolomites and mineralized stockwork hosted by underlying quartz-monzonite porphyry. The northwestern flank of the TK project has coincident AMT and IP anomaly which will be tested by drillhole TK3a to the currently permitted depth of 3,600 feet (1,097 meters).


In December, the Contractor completed drilling of hole TK4 in the southern flank of the Thompson Knolls magnetic anomaly. The drillhole went to a depth of 1,421 feet (433 meters) intercepting a quartz-monzonite porphyry intrusion at depth of 633 feet (193 meters). The intrusive rock contains quartz veinlets within intervals of argillic, quartz-sericitic, and potassic alteration. The hydrothermal alteration in the quartz-monzonite porphyry confirms the presence of conductive rocks previously outlined by the AMT survey.

- Drillhole 21TA-139, a step-out hole located 100 m south of the resource model, intersected 150.7 m of 0.65 g/t Au from 11.0 m downhole, including 5.6 m of 2.47 g/t Au and 9.3 m of 1.40 g/t Au.
- Drillhole 21TA-137 intersected 119.0 m of 0.72 g/t Au from 21.3 m downhole, including 4.8 m of 3.71 g/t Au.
- Drillhole 21TA-138 returned 46.5 m of 1.12 g/t Au from 12.7 m downhole, including 0.69 m of 18.80 g/t Au.



				CONTAIN	CONTAINED METAL				
Category	Tonnage	Ag	Pb	Zn	Au	Cu	AgEq	Ag	AgEq
		(g/t)	(%)	(%)	(g/t)	(%)	(g/t)	(oz)	(oz)
Indicated	404,000	332	2.63	1.95	0.26	0.16	451	4,317,540	5,858,521
Inferred	700,000	249	2.51	1.58	0.24	0.12	356	5,600,256	8,006,431
sw sw	NORTH			304.714		ACCESS.		ALCORE DECODOR DECO	NE
2762		80H-32	NOH.28	RDH-18	80H-08			859-51	1752
	ROAL BOAT		1 Contraction		Ż	5		5/ver Equivalent (ounor 4.0.5 0.5 to 1.0 1.0 to 1.0 1.0 to 1.0 1.0 to 5.0 1.0 to 5.0 1.0 to 5.0 1.0 to 5.0 1.0 to 5.0 1.0 to 5.0 1.0 to 5.0	e per ton)
etians	100000	440004		NE		Plan view of section		Long section of the 12 win, Berbania Mine, historic workings, upd estimated block mod (indicated/inferred o 2021 diril traces. Vie northwest. UTM WC684	showing 502 ared 2021 el grades nly), and w facing
PORM on					a and a second			KUYASIL	
			50ver Equivalen + 0.5 0.5 to 1.0 1.0 to 3.0 3.0 to 5.0 5.0 to 100 10.5 to 20.0 > 2.0 to	tl (ounce per ton)		-	1		40%2 20 40 40 80 70
	Plan view of section	4	Bethania Mine, workings, updat block mc (indicated/inf 2021 drill tra	(the Victoria win, showing historic ed 2021 estimated odel grades ferred only), and ces. View facing threat.					

UTM WGS84

KUYASILVER

0 0 30 40 60 m

1